keets2 / app.py
shukdevdatta123's picture
Update app.py
da8e3d2 verified
raw
history blame
7.43 kB
import gradio as gr
import openai
from kokoro import KPipeline, KModel
import random
import os
import torch
import time
# Set up the OpenAI API key (optional)
openai.api_key = None # Will be set by the user through the UI
# Check if GPU is available
CUDA_AVAILABLE = torch.cuda.is_available()
# Initialize the models and pipelines (for TTS)
models = {gpu: KModel().to('cuda' if gpu else 'cpu').eval() for gpu in [False] + ([True] if CUDA_AVAILABLE else [])}
pipelines = {lang_code: KPipeline(lang_code=lang_code, model=False) for lang_code in 'abefhijpz']
# Load lexicon for specific languages
pipelines['a'].g2p.lexicon.golds['kokoro'] = 'kˈOkəɹO'
pipelines['b'].g2p.lexicon.golds['kokoro'] = 'kˈQkəɹQ'
# Initialize random texts for generating sample text
random_texts = {}
for lang in ['en']:
with open(f'{lang}.txt', 'r') as r:
random_texts[lang] = [line.strip() for line in r]
def get_random_text(voice):
lang = dict(a='en', b='en')[voice[0]]
return random.choice(random_texts[lang])
# Generate function to create speech from text
def generate_first(text, voice='af_heart', speed=1, use_gpu=CUDA_AVAILABLE):
pipeline = pipelines[voice[0]]
pack = pipeline.load_voice(voice)
use_gpu = use_gpu and CUDA_AVAILABLE
for _, ps, _ in pipeline(text, voice, speed):
ref_s = pack[len(ps)-1]
try:
if use_gpu:
audio = forward_gpu(ps, ref_s, speed)
else:
audio = models[False](ps, ref_s, speed)
except gr.exceptions.Error as e:
if use_gpu:
gr.Warning(str(e))
gr.Info('Retrying with CPU. To avoid this error, change Hardware to CPU.')
audio = models[False](ps, ref_s, speed)
else:
raise gr.Error(e)
return (24000, audio.numpy()), ps
return None, ''
# Translator function using OpenAI API
def translate_to_english(api_key, text, lang_code):
openai.api_key = api_key
try:
prompt = f"Translate the following text from {lang_code} to English: \n\n{text}"
response = openai.ChatCompletion.create(
model="gpt-4",
messages=[{"role": "system", "content": "You are a helpful assistant that translates text."},
{"role": "user", "content": prompt}]
)
translated_text = response['choices'][0]['message']['content'].strip()
return translated_text
except Exception as e:
return f"Error: {str(e)}"
def generate_audio_from_text(text, lang_code, voice, speed, use_gpu=True):
pipeline = pipelines[lang_code]
pack = pipeline.load_voice(voice)
use_gpu = use_gpu and CUDA_AVAILABLE
for _, ps, _ in pipeline(text, voice, speed):
ref_s = pack[len(ps)-1]
try:
if use_gpu:
audio = forward_gpu(ps, ref_s, speed)
else:
audio = models[False](ps, ref_s, speed)
except gr.exceptions.Error as e:
if use_gpu:
gr.Warning(str(e))
gr.Info('Switching to CPU')
audio = models[False](ps, ref_s, speed)
else:
raise gr.Error(e)
return (24000, audio.numpy())
# Define your available voices here in the CHOICES dictionary
CHOICES = {
'af_heart': '🇺🇸 🚺 Heart ❤️',
'af_bella': '🇺🇸 🚺 Bella 🔥',
'af_nicole': '🇺🇸 🚺 Nicole 🎧',
'af_aoede': '🇺🇸 🚺 Aoede',
'af_kore': '🇺🇸 🚺 Kore',
'af_sarah': '🇺🇸 🚺 Sarah',
'af_nova': '🇺🇸 🚺 Nova',
'af_sky': '🇺🇸 🚺 Sky',
'af_alloy': '🇺🇸 🚺 Alloy',
'af_jessica': '🇺🇸 🚺 Jessica',
'af_river': '🇺🇸 🚺 River',
'am_michael': '🇺🇸 🚹 Michael',
'am_fenrir': '🇺🇸 🚹 Fenrir',
'am_puck': '🇺🇸 🚹 Puck',
'am_echo': '🇺🇸 🚹 Echo',
'am_eric': '🇺🇸 🚹 Eric',
'am_liam': '🇺🇸 🚹 Liam',
'am_onyx': '🇺🇸 🚹 Onyx',
'am_santa': '🇺🇸 🚹 Santa',
'am_adam': '🇺🇸 🚹 Adam',
'bf_emma': '🇬🇧 🚺 Emma',
'bf_isabella': '🇬🇧 🚺 Isabella',
'bf_alice': '🇬🇧 🚺 Alice',
'bf_lily': '🇬🇧 🚺 Lily',
'bm_george': '🇬🇧 🚹 George',
'bm_fable': '🇬🇧 🚹 Fable',
'bm_lewis': '🇬🇧 🚹 Lewis',
'bm_daniel': '🇬🇧 🚹 Daniel',
'ef_dora': '🇪🇸 🚺 Dora',
'em_alex': '🇪🇸 🚹 Alex',
'em_santa': '🇪🇸 🚹 Santa',
'ff_siwis': '🇫🇷 🚺 Siwis',
'hf_alpha': '🇮🇳 🚹 Alpha',
'hf_beta': '🇮🇳 🚹 Beta',
'hm_omega': '🇮🇳 🚹 Omega',
'hm_psi': '🇮🇳 🚹 Psi',
'if_sara': '🇮🇹 🚺 Sara',
'im_nicola': '🇮🇹 🚺 Nicola',
'jf_alpha': '🇯🇵 🚹 Alpha',
'jf_gongitsune': '🇯🇵 🚹 Gongitsune',
'jf_nezumi': '🇯🇵 🚹 Nezumi',
'jf_tebukuro': '🇯🇵 🚹 Tebukuro',
'jm_kumo': '🇯🇵 🚹 Kumo',
'pf_dora': '🇧🇷 🚺 Dora',
'pm_alex': '🇧🇷 🚹 Alex',
'pm_santa': '🇧🇷 🚹 Santa',
'zf_xiaobei': '🇨🇳 🚺 Xiaobei',
'zf_xiaoni': '🇨🇳 🚺 Xiaoni',
'zf_xiaoxiao': '🇨🇳 🚺 Xiaoxiao',
'zf_xiaoyi': '🇨🇳 🚺 Xiaoyi',
'zm_yunjian': '🇨🇳 🚹 Yunjian',
'zm_yunxi': '🇨🇳 🚹 Yunxi',
'zm_yunxia': '🇨🇳 🚹 Yunxia',
'zm_yunyang': '🇨🇳 🚹 Yunyang'
}
# Gradio interface setup
with gr.Blocks() as app:
gr.Markdown("### Kokoro Text-to-Speech with Translation")
with gr.Row():
with gr.Column():
# Input for text and language settings
input_text = gr.Textbox(label="Enter Text", placeholder="Type your text here...")
voice = gr.Dropdown(list(CHOICES.items()), value='af_heart', label='Voice')
use_gpu = gr.Checkbox(label="Use GPU", value=CUDA_AVAILABLE)
speed = gr.Slider(minimum=0.5, maximum=2, value=1, step=0.1, label="Speed")
openai_api_key = gr.Textbox(label="Enter OpenAI API Key (for translation)", type="password")
random_btn = gr.Button("Random Text")
with gr.Column():
out_audio = gr.Audio(label="Generated Audio", interactive=False, autoplay=True)
out_text = gr.Textbox(label="Generated Audio Tokens", interactive=False)
generate_btn = gr.Button("Generate Audio")
translate_btn = gr.Button("Translate and Generate Audio")
random_btn.click(fn=get_random_text, inputs=[voice], outputs=[input_text])
def handle_translation(text, api_key, lang_code, voice, speed, use_gpu):
translated_text = translate_to_english(api_key, text, lang_code)
translated_audio = generate_audio_from_text(translated_text, 'a', voice, speed, use_gpu)
return translated_audio, translated_text
translate_btn.click(fn=handle_translation, inputs=[input_text, openai_api_key, voice, speed, use_gpu], outputs=[out_audio, out_text])
def generate_and_play(text, voice, speed, use_gpu):
audio, tokens = generate_first(text, voice, speed, use_gpu)
return audio, tokens
generate_btn.click(fn=generate_and_play, inputs=[input_text, voice, speed, use_gpu], outputs=[out_audio, out_text])
app.launch()