keets2 / app.py
shukdevdatta123's picture
Update app.py
9def98f verified
raw
history blame
5.16 kB
import gradio as gr
import openai
from kokoro import KPipeline
import random
import os
import torch
import time
from kokoro import KPipeline, KModel
# Set up the OpenAI API key (optional)
openai.api_key = None # Will be set by the user through the UI
# Check if GPU is available
CUDA_AVAILABLE = torch.cuda.is_available()
# Initialize the models and pipelines (for TTS)
models = {gpu: KModel().to('cuda' if gpu else 'cpu').eval() for gpu in [False] + ([True] if CUDA_AVAILABLE else [])}
pipelines = {lang_code: KPipeline(lang_code=lang_code, model=False) for lang_code in 'abefhijpz'}
# Load lexicon for specific languages
pipelines['a'].g2p.lexicon.golds['kokoro'] = 'kˈOkəɹO'
pipelines['b'].g2p.lexicon.golds['kokoro'] = 'kˈQkəɹQ'
# Initialize random texts for generating sample text
random_texts = {}
for lang in ['en']:
with open(f'{lang}.txt', 'r') as r:
random_texts[lang] = [line.strip() for line in r]
def get_random_text(voice):
lang = dict(a='en', b='en')[voice[0]]
return random.choice(random_texts[lang])
# Generate function to create speech from text
def generate_first(text, voice='af_heart', speed=1, use_gpu=CUDA_AVAILABLE):
pipeline = pipelines[voice[0]]
pack = pipeline.load_voice(voice)
use_gpu = use_gpu and CUDA_AVAILABLE
for _, ps, _ in pipeline(text, voice, speed):
ref_s = pack[len(ps)-1]
try:
if use_gpu:
audio = forward_gpu(ps, ref_s, speed)
else:
audio = models[False](ps, ref_s, speed)
except gr.exceptions.Error as e:
if use_gpu:
gr.Warning(str(e))
gr.Info('Retrying with CPU. To avoid this error, change Hardware to CPU.')
audio = models[False](ps, ref_s, speed)
else:
raise gr.Error(e)
return (24000, audio.numpy()), ps
return None, ''
# Translator function using OpenAI API
def translate_to_english(api_key, text, lang_code):
openai.api_key = api_key
try:
prompt = f"Translate the following text from {lang_code} to English: \n\n{text}"
response = openai.ChatCompletion.create(
model="gpt-4o",
messages=[{"role": "system", "content": "You are a helpful assistant that translates text."},
{"role": "user", "content": prompt}]
)
translated_text = response['choices'][0]['message']['content'].strip()
return translated_text
except Exception as e:
return f"Error: {str(e)}"
def generate_audio_from_text(text, lang_code, voice, speed, use_gpu=True):
pipeline = pipelines[lang_code]
pack = pipeline.load_voice(voice)
use_gpu = use_gpu and CUDA_AVAILABLE
for _, ps, _ in pipeline(text, voice, speed):
ref_s = pack[len(ps)-1]
try:
if use_gpu:
audio = forward_gpu(ps, ref_s, speed)
else:
audio = models[False](ps, ref_s, speed)
except gr.exceptions.Error as e:
if use_gpu:
gr.Warning(str(e))
gr.Info('Switching to CPU')
audio = models[False](ps, ref_s, speed)
else:
raise gr.Error(e)
return (24000, audio.numpy())
# Gradio interface setup
with gr.Blocks() as app:
gr.Markdown("### Kokoro Text-to-Speech with Translation")
with gr.Row():
with gr.Column():
# Input for text and language settings
input_text = gr.Textbox(label="Enter Text", placeholder="Type your text here...")
voice = gr.Dropdown(list(CHOICES.items()), value='af_heart', label='Voice')
use_gpu = gr.Checkbox(label="Use GPU", value=CUDA_AVAILABLE)
speed = gr.Slider(minimum=0.5, maximum=2, value=1, step=0.1, label="Speed")
openai_api_key = gr.Textbox(label="Enter OpenAI API Key (for translation)", type="password")
random_btn = gr.Button("Random Text")
with gr.Column():
out_audio = gr.Audio(label="Generated Audio", interactive=False, autoplay=True)
out_text = gr.Textbox(label="Generated Audio Tokens", interactive=False)
generate_btn = gr.Button("Generate Audio")
translate_btn = gr.Button("Translate and Generate Audio")
random_btn.click(fn=get_random_text, inputs=[voice], outputs=[input_text])
def handle_translation(text, api_key, lang_code, voice, speed, use_gpu):
translated_text = translate_to_english(api_key, text, lang_code)
translated_audio = generate_audio_from_text(translated_text, 'a', voice, speed, use_gpu)
return translated_audio, translated_text
translate_btn.click(fn=handle_translation, inputs=[input_text, openai_api_key, voice, speed, use_gpu], outputs=[out_audio, out_text])
def generate_and_play(text, voice, speed, use_gpu):
audio, tokens = generate_first(text, voice, speed, use_gpu)
return audio, tokens
generate_btn.click(fn=generate_and_play, inputs=[input_text, voice, speed, use_gpu], outputs=[out_audio, out_text])
app.launch()