|
import spaces |
|
from kokoro import KModel, KPipeline |
|
import gradio as gr |
|
import os |
|
import random |
|
import torch |
|
|
|
IS_DUPLICATE = not os.getenv('SPACE_ID', '').startswith('hexgrad/') |
|
CHAR_LIMIT = None if IS_DUPLICATE else 5000 |
|
|
|
CUDA_AVAILABLE = torch.cuda.is_available() |
|
models = {gpu: KModel().to('cuda' if gpu else 'cpu').eval() for gpu in [False] + ([True] if CUDA_AVAILABLE else [])} |
|
pipelines = {lang_code: KPipeline(lang_code=lang_code, model=False) for lang_code in 'ab'} |
|
pipelines['a'].g2p.lexicon.golds['kokoro'] = 'kˈOkəɹO' |
|
pipelines['b'].g2p.lexicon.golds['kokoro'] = 'kˈQkəɹQ' |
|
|
|
@spaces.GPU(duration=10) |
|
def forward_gpu(ps, ref_s, speed): |
|
return models[True](ps, ref_s, speed) |
|
|
|
def generate_first(text, voice='af_heart', speed=1, use_gpu=CUDA_AVAILABLE): |
|
text = text if CHAR_LIMIT is None else text.strip()[:CHAR_LIMIT] |
|
pipeline = pipelines[voice[0]] |
|
pack = pipeline.load_voice(voice) |
|
use_gpu = use_gpu and CUDA_AVAILABLE |
|
for _, ps, _ in pipeline(text, voice, speed): |
|
ref_s = pack[len(ps)-1] |
|
try: |
|
if use_gpu: |
|
audio = forward_gpu(ps, ref_s, speed) |
|
else: |
|
audio = models[False](ps, ref_s, speed) |
|
except gr.exceptions.Error as e: |
|
if use_gpu: |
|
gr.Warning(str(e)) |
|
gr.Info('Retrying with CPU. To avoid this error, change Hardware to CPU.') |
|
audio = models[False](ps, ref_s, speed) |
|
else: |
|
raise gr.Error(e) |
|
return (24000, audio.numpy()), ps |
|
return None, '' |
|
|
|
|
|
def predict(text, voice='af_heart', speed=1): |
|
return return_audio_ps(text, voice, speed, use_gpu=False)[0] |
|
|
|
def tokenize_first(text, voice='af_heart'): |
|
pipeline = pipelines[voice[0]] |
|
for _, ps, _ in pipeline(text, voice): |
|
return ps |
|
return '' |
|
|
|
def generate_all(text, voice='af_heart', speed=1, use_gpu=CUDA_AVAILABLE): |
|
text = text if CHAR_LIMIT is None else text.strip()[:CHAR_LIMIT] |
|
pipeline = pipelines[voice[0]] |
|
pack = pipeline.load_voice(voice) |
|
use_gpu = use_gpu and CUDA_AVAILABLE |
|
for _, ps, _ in pipeline(text, voice, speed): |
|
ref_s = pack[len(ps)-1] |
|
try: |
|
if use_gpu: |
|
audio = forward_gpu(ps, ref_s, speed) |
|
else: |
|
audio = models[False](ps, ref_s, speed) |
|
except gr.exceptions.Error as e: |
|
if use_gpu: |
|
gr.Warning(str(e)) |
|
gr.Info('Switching to CPU') |
|
audio = models[False](ps, ref_s, speed) |
|
else: |
|
raise gr.Error(e) |
|
yield 24000, audio.numpy() |
|
|
|
random_texts = {} |
|
for lang in ['en']: |
|
with open(f'{lang}.txt', 'r') as r: |
|
random_texts[lang] = [line.strip() for line in r] |
|
|
|
def get_random_text(voice): |
|
lang = dict(a='en', b='en')[voice[0]] |
|
return random.choice(random_texts[lang]) |
|
|
|
CHOICES = { |
|
'🇺🇸 🚺 Heart ❤️': 'af_heart', |
|
'🇺🇸 🚺 Bella 🔥': 'af_bella', |
|
'🇺🇸 🚺 Nicole 🎧': 'af_nicole', |
|
'🇺🇸 🚺 Aoede': 'af_aoede', |
|
'🇺🇸 🚺 Kore': 'af_kore', |
|
'🇺🇸 🚺 Sarah': 'af_sarah', |
|
'🇺🇸 🚺 Nova': 'af_nova', |
|
'🇺🇸 🚺 Sky': 'af_sky', |
|
'🇺🇸 🚺 Alloy': 'af_alloy', |
|
'🇺🇸 🚺 Jessica': 'af_jessica', |
|
'🇺🇸 🚺 River': 'af_river', |
|
'🇺🇸 🚹 Michael': 'am_michael', |
|
'🇺🇸 🚹 Fenrir': 'am_fenrir', |
|
'🇺🇸 🚹 Puck': 'am_puck', |
|
'🇺🇸 🚹 Echo': 'am_echo', |
|
'🇺🇸 🚹 Eric': 'am_eric', |
|
'🇺🇸 🚹 Liam': 'am_liam', |
|
'🇺🇸 🚹 Onyx': 'am_onyx', |
|
'🇺🇸 🚹 Santa': 'am_santa', |
|
'🇺🇸 🚹 Adam': 'am_adam', |
|
'🇬🇧 🚺 Emma': 'bf_emma', |
|
'🇬🇧 🚺 Isabella': 'bf_isabella', |
|
'🇬🇧 🚺 Alice': 'bf_alice', |
|
'🇬🇧 🚺 Lily': 'bf_lily', |
|
'🇬🇧 🚹 George': 'bm_george', |
|
'🇬🇧 🚹 Fable': 'bm_fable', |
|
'🇬🇧 🚹 Lewis': 'bm_lewis', |
|
'🇬🇧 🚹 Daniel': 'bm_daniel', |
|
} |
|
for v in CHOICES.values(): |
|
pipelines[v[0]].load_voice(v) |
|
|
|
TOKEN_NOTE = ''' |
|
💡 You can customize pronunciation like this: `[Kokoro](/kˈOkəɹO/)` |
|
|
|
⬇️ Lower stress `[1 level](-1)` or `[2 levels](-2)` |
|
|
|
⬆️ Raise stress 1 level `[or](+2)` 2 levels (only works on less stressed, usually short words) |
|
''' |
|
|
|
with gr.Blocks() as generate_tab: |
|
out_audio = gr.Audio(label='Output Audio', interactive=False, streaming=False, autoplay=True) |
|
generate_btn = gr.Button('Generate', variant='primary') |
|
with gr.Accordion('Output Tokens', open=False): |
|
out_ps = gr.Textbox(interactive=False, show_label=False, info='Tokens used to generate the audio, up to 510 context length.') |
|
tokenize_btn = gr.Button('Tokenize', variant='secondary') |
|
gr.Markdown(TOKEN_NOTE) |
|
predict_btn = gr.Button('Predict', variant='secondary', visible=False) |
|
|
|
STREAM_NOTE = ['⚠️ There is an unknown Gradio bug that might yield no audio the first time you click `Stream`.'] |
|
if CHAR_LIMIT is not None: |
|
STREAM_NOTE.append(f'✂️ Each stream is capped at {CHAR_LIMIT} characters.') |
|
STREAM_NOTE.append('🚀 Want more characters? You can [use Kokoro directly](https://huggingface.co/hexgrad/Kokoro-82M#usage) or duplicate this space:') |
|
STREAM_NOTE = '\n\n'.join(STREAM_NOTE) |
|
|
|
with gr.Blocks() as stream_tab: |
|
out_stream = gr.Audio(label='Output Audio Stream', interactive=False, streaming=True, autoplay=True) |
|
with gr.Row(): |
|
stream_btn = gr.Button('Stream', variant='primary') |
|
stop_btn = gr.Button('Stop', variant='stop') |
|
with gr.Accordion('Note', open=True): |
|
gr.Markdown(STREAM_NOTE) |
|
gr.DuplicateButton() |
|
|
|
API_OPEN = os.getenv('SPACE_ID') != 'hexgrad/Kokoro-TTS' |
|
API_NAME = None if API_OPEN else False |
|
with gr.Blocks() as app: |
|
with gr.Row(): |
|
gr.Markdown('[***Kokoro*** **is an open-weight TTS model with 82 million parameters.**](https://hf.co/hexgrad/Kokoro-82M)', container=True) |
|
with gr.Row(): |
|
with gr.Column(): |
|
text = gr.Textbox(label='Input Text', info=f"Up to ~500 characters per Generate, or {'∞' if CHAR_LIMIT is None else CHAR_LIMIT} characters per Stream") |
|
with gr.Row(): |
|
voice = gr.Dropdown(list(CHOICES.items()), value='af_heart', label='Voice', info='Quality and availability vary by language') |
|
use_gpu = gr.Dropdown( |
|
[('ZeroGPU 🚀', True), ('CPU 🐌', False)], |
|
value=CUDA_AVAILABLE, |
|
label='Hardware', |
|
info='GPU is usually faster, but has a usage quota', |
|
interactive=CUDA_AVAILABLE |
|
) |
|
speed = gr.Slider(minimum=0.5, maximum=2, value=1, step=0.1, label='Speed') |
|
random_btn = gr.Button('Random Text', variant='secondary') |
|
with gr.Column(): |
|
gr.TabbedInterface([generate_tab, stream_tab], ['Generate', 'Stream']) |
|
random_btn.click(fn=get_random_text, inputs=[voice], outputs=[text], api_name=API_NAME) |
|
generate_btn.click(fn=generate_first, inputs=[text, voice, speed, use_gpu], outputs=[out_audio, out_ps], api_name=API_NAME) |
|
tokenize_btn.click(fn=tokenize_first, inputs=[text, voice], outputs=[out_ps], api_name=API_NAME) |
|
stream_event = stream_btn.click(fn=generate_all, inputs=[text, voice, speed, use_gpu], outputs=[out_stream], api_name=API_NAME) |
|
stop_btn.click(fn=None, cancels=stream_event) |
|
predict_btn.click(fn=predict, inputs=[text, voice, speed], outputs=[out_audio], api_name=API_NAME) |
|
|
|
if __name__ == '__main__': |
|
app.queue(api_open=API_OPEN).launch(show_api=API_OPEN, ssr_mode=True) |
|
|