Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,125 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
import torch
|
| 3 |
+
from PIL import Image as PILImage
|
| 4 |
+
from transformers import AutoImageProcessor, SiglipForImageClassification
|
| 5 |
+
import os
|
| 6 |
+
import warnings
|
| 7 |
+
|
| 8 |
+
# --- Configuration ---
|
| 9 |
+
MODEL_IDENTIFIER = r"Ateeqq/ai-vs-human-image-detector"
|
| 10 |
+
DEVICE = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 11 |
+
|
| 12 |
+
# --- Suppress specific warnings ---
|
| 13 |
+
# Suppress the specific PIL warning about potential decompression bombs
|
| 14 |
+
warnings.filterwarnings("ignore", message="Possibly corrupt EXIF data.")
|
| 15 |
+
# Suppress transformers warning about loading weights without specifying revision
|
| 16 |
+
warnings.filterwarnings("ignore", message=".*You are using the default legacy behaviour.*")
|
| 17 |
+
|
| 18 |
+
|
| 19 |
+
# --- Load Model and Processor (Load once at startup) ---
|
| 20 |
+
print(f"Using device: {DEVICE}")
|
| 21 |
+
print(f"Loading processor from: {MODEL_IDENTIFIER}")
|
| 22 |
+
try:
|
| 23 |
+
processor = AutoImageProcessor.from_pretrained(MODEL_IDENTIFIER)
|
| 24 |
+
print(f"Loading model from: {MODEL_IDENTIFIER}")
|
| 25 |
+
model = SiglipForImageClassification.from_pretrained(MODEL_IDENTIFIER)
|
| 26 |
+
model.to(DEVICE)
|
| 27 |
+
model.eval()
|
| 28 |
+
print("Model and processor loaded successfully.")
|
| 29 |
+
except Exception as e:
|
| 30 |
+
print(f"FATAL: Error loading model or processor: {e}")
|
| 31 |
+
# If the model fails to load, we raise an exception to stop the app
|
| 32 |
+
raise gr.Error(f"Failed to load the model: {e}. Cannot start the application.") from e
|
| 33 |
+
|
| 34 |
+
# --- Prediction Function ---
|
| 35 |
+
def classify_image(image_pil):
|
| 36 |
+
"""
|
| 37 |
+
Classifies an image as AI-generated or Human-made.
|
| 38 |
+
|
| 39 |
+
Args:
|
| 40 |
+
image_pil (PIL.Image.Image): Input image in PIL format.
|
| 41 |
+
|
| 42 |
+
Returns:
|
| 43 |
+
dict: A dictionary mapping class labels ('ai', 'human') to their
|
| 44 |
+
confidence scores. Returns an empty dict if input is None.
|
| 45 |
+
"""
|
| 46 |
+
if image_pil is None:
|
| 47 |
+
# Handle case where the user clears the image input
|
| 48 |
+
print("Warning: No image provided.")
|
| 49 |
+
return {} # Return empty dict, Gradio Label handles this
|
| 50 |
+
|
| 51 |
+
print("Processing image...")
|
| 52 |
+
try:
|
| 53 |
+
# Ensure image is RGB
|
| 54 |
+
image = image_pil.convert("RGB")
|
| 55 |
+
|
| 56 |
+
# Preprocess using the loaded processor
|
| 57 |
+
inputs = processor(images=image, return_tensors="pt").to(DEVICE)
|
| 58 |
+
|
| 59 |
+
# Perform inference
|
| 60 |
+
print("Running inference...")
|
| 61 |
+
with torch.no_grad():
|
| 62 |
+
outputs = model(**inputs)
|
| 63 |
+
logits = outputs.logits
|
| 64 |
+
|
| 65 |
+
# Get probabilities using softmax
|
| 66 |
+
# outputs.logits is shape [1, num_labels], softmax over the last dim
|
| 67 |
+
probabilities = torch.softmax(logits, dim=-1)[0] # Get probabilities for the first (and only) image
|
| 68 |
+
|
| 69 |
+
# Create a dictionary of label -> score
|
| 70 |
+
results = {}
|
| 71 |
+
for i, prob in enumerate(probabilities):
|
| 72 |
+
label = model.config.id2label[i]
|
| 73 |
+
results[label] = prob.item() # Use .item() to get Python float
|
| 74 |
+
|
| 75 |
+
print(f"Prediction results: {results}")
|
| 76 |
+
return results
|
| 77 |
+
|
| 78 |
+
except Exception as e:
|
| 79 |
+
print(f"Error during prediction: {e}")
|
| 80 |
+
# Optionally raise a Gradio error to show it in the UI
|
| 81 |
+
# raise gr.Error(f"Error processing image: {e}")
|
| 82 |
+
return {"Error": f"Processing failed: {e}"} # Or return an error message
|
| 83 |
+
|
| 84 |
+
# --- Gradio Interface Definition ---
|
| 85 |
+
|
| 86 |
+
# Define Example Images (Optional, but recommended)
|
| 87 |
+
# Create an 'examples' folder in your Space repo and put images there
|
| 88 |
+
example_dir = "examples"
|
| 89 |
+
example_images = []
|
| 90 |
+
if os.path.exists(example_dir):
|
| 91 |
+
for img_name in os.listdir(example_dir):
|
| 92 |
+
if img_name.lower().endswith(('.png', '.jpg', '.jpeg', '.webp')):
|
| 93 |
+
example_images.append(os.path.join(example_dir, img_name))
|
| 94 |
+
print(f"Found examples: {example_images}")
|
| 95 |
+
else:
|
| 96 |
+
print("No 'examples' directory found. Examples will not be shown.")
|
| 97 |
+
|
| 98 |
+
|
| 99 |
+
# Define the Gradio interface
|
| 100 |
+
iface = gr.Interface(
|
| 101 |
+
fn=classify_image,
|
| 102 |
+
inputs=gr.Image(type="pil", label="Upload Image", sources=["upload", "webcam", "clipboard"]), # Use PIL format as input
|
| 103 |
+
outputs=gr.Label(num_top_classes=2, label="Prediction Results"), # Use gr.Label for classification output
|
| 104 |
+
title="AI vs Human Image Detector",
|
| 105 |
+
description=(
|
| 106 |
+
f"Upload an image to classify if it was likely generated by AI or created by a human. "
|
| 107 |
+
f"Uses the `{MODEL_IDENTIFIER}` model on Hugging Face. Running on **{str(DEVICE).upper()}**."
|
| 108 |
+
),
|
| 109 |
+
article=(
|
| 110 |
+
"<div>"
|
| 111 |
+
"<p>This tool uses a SigLIP model fine-tuned for distinguishing between AI-generated and human-made images.</p>"
|
| 112 |
+
f"<p>Model Card: <a href='https://huggingface.co/{MODEL_IDENTIFIER}' target='_blank'>{MODEL_IDENTIFIER}</a></p>"
|
| 113 |
+
"<p style='text-align: center;'>App created using Gradio and Hugging Face Transformers.</p>"
|
| 114 |
+
"</div>"
|
| 115 |
+
),
|
| 116 |
+
examples=example_images if example_images else None, # Only add examples if found
|
| 117 |
+
cache_examples= True if example_images else False, # Cache results for examples if they exist
|
| 118 |
+
allow_flagging="never" # Or "auto" if you want users to flag issues
|
| 119 |
+
)
|
| 120 |
+
|
| 121 |
+
# --- Launch the App ---
|
| 122 |
+
if __name__ == "__main__":
|
| 123 |
+
print("Launching Gradio interface...")
|
| 124 |
+
iface.launch()
|
| 125 |
+
print("Gradio interface launched.")
|