Spaces:
Runtime error
Runtime error
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,129 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import re
|
2 |
+
import gradio as gr
|
3 |
+
import os
|
4 |
+
import accelerate
|
5 |
+
import spaces
|
6 |
+
from tqdm import tqdm
|
7 |
+
import subprocess
|
8 |
+
from huggingface_hub import hf_hub_download
|
9 |
+
from llama_cpp import Llama
|
10 |
+
from huggingface_hub import login
|
11 |
+
from docling.document_converter import DocumentConverter
|
12 |
+
|
13 |
+
login(token = os.getenv('HF_TOKEN'))
|
14 |
+
|
15 |
+
repo_id = "QuantFactory/Meta-Llama-3-70B-Instruct-GGUF"
|
16 |
+
model_id = "Meta-Llama-3-70B-Instruct.Q2_K.gguf"
|
17 |
+
|
18 |
+
local_dir = "models"
|
19 |
+
|
20 |
+
hf_hub_download(
|
21 |
+
repo_id=repo_id,
|
22 |
+
filename=model_id,
|
23 |
+
local_dir = local_dir
|
24 |
+
)
|
25 |
+
|
26 |
+
def harmonize_doc(llm, pdftext, prompt, maxtokens, temperature, top_probability, model_name):
|
27 |
+
|
28 |
+
prompt = """
|
29 |
+
Please reformat the provided medical report into the following standardized structure:
|
30 |
+
|
31 |
+
1. Hospital Information:
|
32 |
+
- Name of Hospital: [Name of hospital]
|
33 |
+
- Department: [Relevant department or 'N/A']
|
34 |
+
|
35 |
+
2. Patient Information:
|
36 |
+
- Name: [Full Name]
|
37 |
+
- Gender: [Gender]
|
38 |
+
- Date of Birth: [Date of Birth]
|
39 |
+
- Address: [Full Address or 'N/A']
|
40 |
+
- ID Numbers:
|
41 |
+
- [Relevant identifiers such as NHS Number, Case Number, etc.]
|
42 |
+
|
43 |
+
3. Procedure Details:
|
44 |
+
- Date of Procedure: [Date]
|
45 |
+
- Referring Doctor: [Name or 'N/A']
|
46 |
+
- Performed By:
|
47 |
+
- Consultant: [Name or 'N/A']
|
48 |
+
- Additional Clinicians: [Name(s) or 'N/A']
|
49 |
+
- Nurses: [Name(s) or 'N/A']
|
50 |
+
- Details:
|
51 |
+
- Indications: [Symptoms, reasons for procedure]
|
52 |
+
- Instrument: [Instrument details or 'N/A']
|
53 |
+
- Co-morbidities: [Relevant conditions or 'N/A']
|
54 |
+
- ASA Status: [ASA classification or 'N/A']
|
55 |
+
- Procedure: [Details of patient preparation and exact description of procedures performed as in the original report or 'N/A']
|
56 |
+
- Findings: [Exact findings from the report, including any locations, measurements, or observations]
|
57 |
+
- Specimens Taken: [Details on specimens, if any, or 'N/A']
|
58 |
+
- Comments: [Additional notes, advice, or remarks from the report]
|
59 |
+
|
60 |
+
4. Diagnosis and Outcomes:
|
61 |
+
- Diagnosis: [Exact diagnosis or 'N/A']
|
62 |
+
- Therapeutic Actions: [Treatments performed or 'N/A']
|
63 |
+
- Complications: [Details on complications or 'No complications']
|
64 |
+
- Follow-Up: [Exact follow-up recommendations from the report]
|
65 |
+
|
66 |
+
Instructions for Output:
|
67 |
+
1. Use the exact wording and details from the original report wherever possible. Do not summarize or interpret information.
|
68 |
+
2. If any information is missing in the original report, use 'N/A' for the corresponding field.
|
69 |
+
3. Ensure the output matches the given structure exactly, without omitting any fields.
|
70 |
+
4. Retain all medical terms, values, and phrases as stated in the report.
|
71 |
+
"""
|
72 |
+
|
73 |
+
|
74 |
+
|
75 |
+
output = llm.create_chat_completion(
|
76 |
+
messages=[
|
77 |
+
{"role": "assistant", "content": prompt},
|
78 |
+
{
|
79 |
+
"role": "user",
|
80 |
+
"content": pdftext
|
81 |
+
}
|
82 |
+
],
|
83 |
+
max_tokens=maxtokens,
|
84 |
+
temperature=temperature
|
85 |
+
)
|
86 |
+
|
87 |
+
output = output['choices'][0]['message']['content']
|
88 |
+
find_index = output.find(' '.join(pdftext.split()[:3]))
|
89 |
+
if find_index != -1:
|
90 |
+
output = output[find_index:].strip()
|
91 |
+
return output
|
92 |
+
|
93 |
+
|
94 |
+
@spaces.GPU(duration=120)
|
95 |
+
def pdf_to_text(files, input_text='', prompt='', model_name='default', temperature=0, maxtokens=2048, top_probability=0.95):
|
96 |
+
llm = Llama(
|
97 |
+
model_path="models/" + model_id,
|
98 |
+
flash_attn=True,
|
99 |
+
n_gpu_layers=81,
|
100 |
+
n_batch=1024,
|
101 |
+
n_ctx=8192,
|
102 |
+
)
|
103 |
+
harmonized_text = ''
|
104 |
+
for file in files:
|
105 |
+
converter = DocumentConverter()
|
106 |
+
result = converter.convert(file)
|
107 |
+
pdftext = result.document.export_to_markdown()
|
108 |
+
input_text = pdftext
|
109 |
+
harmonized_text += harmonize_doc(llm, input_text, prompt, maxtokens, temperature, top_probability, model_name)
|
110 |
+
harmonized_text += '\n\n-----------------------------------------------------------------\n\n'
|
111 |
+
return harmonized_text
|
112 |
+
|
113 |
+
|
114 |
+
temp_slider = gr.Slider(minimum=0, maximum=2, value=0.9, label="Temperature Value")
|
115 |
+
model_name = gr.Dropdown(["default", "fine-tuned"], label="LLama Model")
|
116 |
+
max_tokens = gr.Number(value=600, label="Max Tokens")
|
117 |
+
input_text = gr.Text(label='Input Text')
|
118 |
+
input_prompt = gr.Text(label='Prompt')
|
119 |
+
input_files = gr.File(file_count="multiple")
|
120 |
+
output_path_component = gr.File(label="Select Output Path")
|
121 |
+
iface = gr.Interface(
|
122 |
+
fn=pdf_to_text,
|
123 |
+
inputs=input_files,
|
124 |
+
outputs=['text'],
|
125 |
+
title='COBIx Endoscopy Report Harmonization',
|
126 |
+
description="This application helps standardize medical reports into a consistent format",
|
127 |
+
theme=gr.themes.Soft(),
|
128 |
+
)
|
129 |
+
iface.launch()
|