Spaces:
Runtime error
Runtime error
import gradio as gr | |
import pandas as pd | |
from tensorflow.keras.preprocessing.text import Tokenizer | |
from tensorflow.keras.preprocessing.sequence import pad_sequences | |
from tensorflow.keras.models import load_model | |
from datasets import load_dataset | |
from huggingface_hub import hf_hub_download | |
import numpy as np | |
import tensorflow as tf | |
from transformers import GPT2LMHeadModel, GPT2Tokenizer | |
import torch | |
# Paths to the uploaded models | |
repo_id = "himanishprak23/lstm_rnn" | |
lstm_filename = "model_lstm_4.keras" | |
rnn_filename = "model_rnn_1.keras" | |
lstm_model_path = hf_hub_download(repo_id=repo_id, filename=lstm_filename) | |
rnn_model_path = hf_hub_download(repo_id=repo_id, filename=rnn_filename) | |
# Specify the repository and the CSV file name | |
# Specify the repository and the CSV file name | |
repo_path = "himanishprak23/commentry_Data" | |
file_name = "df_commentary_new.csv" | |
# Load the dataset | |
dataset = load_dataset(repo_path, data_files=file_name, split='train') | |
data_text = dataset.to_pandas() | |
# Load the LSTM model | |
lstm_model = load_model(lstm_model_path) | |
# Load the RNN model | |
rnn_model = load_model(rnn_model_path) | |
# Check the embedding layer's input dimension for LSTM | |
embedding_layer = lstm_model.layers[0] | |
vocab_size = embedding_layer.input_dim | |
# Initialize and fit the tokenizer with limited vocabulary size | |
tokenizer = Tokenizer(num_words=vocab_size) | |
tokenizer.fit_on_texts(data_text['Modified_Commentary']) | |
# Define the maximum sequence length (adjust based on your model training) | |
max_sequence_length = 153 | |
# Define the text generation function for LSTM | |
def generate_with_lstm(commentary_text, num_words): | |
# Tokenize the input text | |
input_sequence = tokenizer.texts_to_sequences([commentary_text]) | |
input_sequence = pad_sequences(input_sequence, maxlen=max_sequence_length) | |
# Convert to tensor | |
input_tensor = tf.convert_to_tensor(input_sequence) | |
# Generate the next words | |
generated_sequence = [] | |
for _ in range(num_words): | |
# Get model predictions | |
output = lstm_model.predict(input_tensor) | |
# Get the index of the most probable next word | |
next_word_index = np.argmax(output[0], axis=-1) | |
# Add the predicted word to the sequence | |
generated_sequence.append(next_word_index) | |
# Append the predicted word to the input sequence | |
input_sequence = np.append(input_sequence[0][1:], next_word_index).reshape(1, -1) | |
input_tensor = tf.convert_to_tensor(input_sequence) | |
# Convert indices back to words | |
reverse_word_index = {value: key for key, value in tokenizer.word_index.items() if value < vocab_size} | |
generated_words = [reverse_word_index.get(i, '') for i in generated_sequence] | |
# Combine the input text with the generated words | |
generated_text = commentary_text + ' ' + ' '.join(generated_words) | |
return generated_text | |
# Define the text generation function for RNN | |
def generate_with_rnn(commentary_text, num_words): | |
# Tokenize the input text | |
input_sequence = tokenizer.texts_to_sequences([commentary_text]) | |
input_sequence = pad_sequences(input_sequence, maxlen=max_sequence_length) | |
# Convert to tensor | |
input_tensor = tf.convert_to_tensor(input_sequence) | |
# Generate the next words | |
generated_sequence = [] | |
for _ in range(num_words): | |
# Get model predictions | |
output = rnn_model.predict(input_tensor) | |
# Get the index of the most probable next word | |
next_word_index = np.argmax(output[0], axis=-1) | |
# Add the predicted word to the sequence | |
generated_sequence.append(next_word_index) | |
# Append the predicted word to the input sequence | |
input_sequence = np.append(input_sequence[0][1:], next_word_index).reshape(1, -1) | |
input_tensor = tf.convert_to_tensor(input_sequence) | |
# Convert indices back to words | |
reverse_word_index = {value: key for key, value in tokenizer.word_index.items() if value < vocab_size} | |
generated_words = [reverse_word_index.get(i, '') for i in generated_sequence] | |
# Combine the input text with the generated words | |
generated_text = commentary_text + ' ' + ' '.join(generated_words) | |
return generated_text | |
# Load GPT-2 models and tokenizers | |
trained_tokenizer = GPT2Tokenizer.from_pretrained("Kumarkishalaya/GPT-2-next-word-prediction") | |
trained_model = GPT2LMHeadModel.from_pretrained("Kumarkishalaya/GPT-2-next-word-prediction") | |
untrained_tokenizer = GPT2Tokenizer.from_pretrained("gpt2") | |
untrained_model = GPT2LMHeadModel.from_pretrained("gpt2") | |
device = "cuda" if torch.cuda.is_available() else "cpu" | |
trained_model.to(device) | |
untrained_model.to(device) | |
# Set pad_token to eos_token | |
trained_tokenizer.pad_token = trained_tokenizer.eos_token | |
untrained_tokenizer.pad_token = untrained_tokenizer.eos_token | |
# Define the text generation function for GPT-2 | |
def generate_with_gpt2(commentary_text, max_length, temperature): | |
# Generate text using the finetuned model | |
inputs = trained_tokenizer(commentary_text, return_tensors="pt", padding=True) | |
input_ids = inputs.input_ids.to(device) | |
attention_mask = inputs.attention_mask.to(device) | |
trained_output = trained_model.generate( | |
input_ids, | |
max_length=max_length, | |
num_beams=5, | |
do_sample=True, | |
temperature=temperature, | |
attention_mask=attention_mask, | |
pad_token_id=trained_tokenizer.eos_token_id | |
) | |
trained_text = trained_tokenizer.decode(trained_output[0], skip_special_tokens=True) | |
# Generate text using the base model | |
inputs = untrained_tokenizer(commentary_text, return_tensors="pt", padding=True) | |
input_ids = inputs.input_ids.to(device) | |
attention_mask = inputs.attention_mask.to(device) | |
untrained_output = untrained_model.generate( | |
input_ids, | |
max_length=max_length, | |
num_beams=5, | |
do_sample=True, | |
temperature=temperature, | |
attention_mask=attention_mask, | |
pad_token_id=untrained_tokenizer.eos_token_id | |
) | |
untrained_text = untrained_tokenizer.decode(untrained_output[0], skip_special_tokens=True) | |
return trained_text, untrained_text | |
# Define the combined function for Gradio interface | |
def generate_with_all_models(commentary_text, num_words, max_length, temperature): | |
lstm_output = generate_with_lstm(commentary_text, num_words) | |
rnn_output = generate_with_rnn(commentary_text, num_words) | |
gpt2_finetuned_output, gpt2_base_output = generate_with_gpt2(commentary_text, max_length, temperature) | |
return rnn_output, lstm_output, gpt2_base_output, gpt2_finetuned_output | |
# Create the Gradio interface | |
iface = gr.Interface( | |
fn=generate_with_all_models, | |
inputs=[ | |
gr.Textbox(lines=2, placeholder="Enter commentary text here...", label="Prompt"), | |
gr.Slider(minimum=10, maximum=100, step=1, value=50, label="Number of words to predict (LSTM/RNN)"), | |
gr.Slider(minimum=10, maximum=100, value=50, step=1, label="Max Length (GPT-2)"), | |
gr.Slider(minimum=0.01, maximum=1.99, value=0.7, label="Temperature (GPT-2)") | |
], | |
outputs=[ | |
gr.Textbox(label="RNN Model Output"), | |
gr.Textbox(label="LSTM Model Output"), | |
gr.Textbox(label="GPT-2 Base Model Output (not-finetuned)"), | |
gr.Textbox(label="GPT-2 Finetuned Model Output") | |
], | |
examples=[ | |
["no run, short ball, turning away", 50, 50, 0.7], | |
["jumps down the track and", 50, 50, 0.7], | |
["another leg bye call. On the pads", 50, 50, 0.7], | |
["That stays low, turns in, hits the pads", 50, 50, 0.7], | |
["goes flat, goes big", 50, 50, 0.7] | |
], | |
title="Next word prediction with RNN, LSTM and GPT-2 Models", | |
description="Start writing a cricket commentary and various models will try to continue it. Compare outputs from LSTM, RNN, and GPT-2 (base & finetuned) models. The RNN & LSTM models both have a single hidden layer trained for 50 epochs, the GPT-2 has been trained for 3 epochs. All models have been trained on 1000 rows of cricket commentary text (~80k word tokens)" | |
) | |
# Launch the app | |
if __name__ == "__main__": | |
iface.launch() | |