Nguyen Thi Dieu Hien commited on
Commit
15ecc9e
·
unverified ·
1 Parent(s): f5bec3e

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +3 -3
app.py CHANGED
@@ -314,7 +314,7 @@ def main():
314
  processed_news = preprocess_text(news_text)
315
  predicted_label, confidence_df = predict_label(processed_news, tokenizer, phobert, model, class_names, max_len)
316
  st.subheader("Confidence Per Label")
317
- st.dataframe(confidence_df, use_container_width=True)
318
  st.subheader("Predicted Label")
319
  st.success(predicted_label)
320
 
@@ -327,7 +327,7 @@ def main():
327
  st.header("Predict")
328
  df_confidence, predicted_label = infer(news_text, tokenizer, models, class_names, max_len)
329
  st.subheader("Confidence Per Label")
330
- st.dataframe(df_confidence, use_container_width=True)
331
  st.subheader("Predicted Label")
332
  st.success(predicted_label)
333
  if model_choice == "phobertbase":
@@ -339,7 +339,7 @@ def main():
339
  st.header("Predict")
340
  df_confidence, predicted_label = infer(news_text, tokenizer, models, class_names, max_len)
341
  st.subheader("Confidence Per Label")
342
- st.dataframe(df_confidence, use_container_width=True)
343
  st.subheader("Predicted Label")
344
  st.success(predicted_label)
345
  if choice == "Train and Evaluate Models":
 
314
  processed_news = preprocess_text(news_text)
315
  predicted_label, confidence_df = predict_label(processed_news, tokenizer, phobert, model, class_names, max_len)
316
  st.subheader("Confidence Per Label")
317
+ st.dataframe(confidence_df, height=600, hide_index=True, use_container_width=True)
318
  st.subheader("Predicted Label")
319
  st.success(predicted_label)
320
 
 
327
  st.header("Predict")
328
  df_confidence, predicted_label = infer(news_text, tokenizer, models, class_names, max_len)
329
  st.subheader("Confidence Per Label")
330
+ st.dataframe(df_confidence, height=600, hide_index=True, use_container_width=True)
331
  st.subheader("Predicted Label")
332
  st.success(predicted_label)
333
  if model_choice == "phobertbase":
 
339
  st.header("Predict")
340
  df_confidence, predicted_label = infer(news_text, tokenizer, models, class_names, max_len)
341
  st.subheader("Confidence Per Label")
342
+ st.dataframe(df_confidence, height=600, hide_index=True, use_container_width=True)
343
  st.subheader("Predicted Label")
344
  st.success(predicted_label)
345
  if choice == "Train and Evaluate Models":