File size: 15,120 Bytes
9d2f4f2 bbf45d0 9d2f4f2 1308a67 bbf45d0 9d2f4f2 7262ace 9d2f4f2 7262ace 1308a67 7262ace 9d2f4f2 bbf45d0 9d2f4f2 bbf45d0 1308a67 9d2f4f2 1308a67 9d2f4f2 1308a67 9d2f4f2 1308a67 9d2f4f2 1308a67 9d2f4f2 1308a67 31bb936 1308a67 31bb936 1308a67 bbf45d0 7262ace 9d2f4f2 7262ace 9d2f4f2 7262ace 9d2f4f2 1308a67 bbf45d0 9d2f4f2 1308a67 9d2f4f2 1308a67 9d2f4f2 1308a67 7262ace 9d2f4f2 1308a67 9d2f4f2 1308a67 9d2f4f2 1308a67 9d2f4f2 7262ace 1308a67 9d2f4f2 7262ace 9d2f4f2 7262ace 9d2f4f2 7262ace bbf45d0 9d2f4f2 bbf45d0 9d2f4f2 1308a67 9d2f4f2 1308a67 9d2f4f2 7262ace 1308a67 9d2f4f2 1308a67 9d2f4f2 1308a67 9d2f4f2 7262ace 9d2f4f2 7262ace 1308a67 9d2f4f2 7262ace 9d2f4f2 7262ace 9d2f4f2 1308a67 9d2f4f2 1308a67 9d2f4f2 1308a67 9d2f4f2 7262ace 9d2f4f2 bbf45d0 1308a67 9d2f4f2 1308a67 9d2f4f2 7262ace 9d2f4f2 1308a67 9d2f4f2 7262ace 1308a67 bbf45d0 1308a67 9d2f4f2 7262ace 1308a67 bbf45d0 9d2f4f2 bbf45d0 1308a67 9d2f4f2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 |
# --- START OF FILE app.py ---
import gradio as gr
import pandas as pd
import plotly.express as px
import time
from datasets import load_dataset # Import the datasets library
# --- Constants ---
MODEL_SIZE_RANGES = {
"Small (<1GB)": (0, 1), "Medium (1-5GB)": (1, 5), "Large (5-20GB)": (5, 20),
"X-Large (20-50GB)": (20, 50), "XX-Large (>50GB)": (50, float('inf'))
}
# The Hugging Face dataset ID to load.
HF_DATASET_ID = "evijit/orgstats_daily_data"
TAG_FILTER_CHOICES = [
"Audio & Speech", "Time series", "Robotics", "Music", "Video", "Images",
"Text", "Biomedical", "Sciences"
]
PIPELINE_TAGS = [
'text-generation', 'text-to-image', 'text-classification', 'text2text-generation',
'audio-to-audio', 'feature-extraction', 'image-classification', 'translation',
'reinforcement-learning', 'fill-mask', 'text-to-speech', 'automatic-speech-recognition',
'image-text-to-text', 'token-classification', 'sentence-similarity', 'question-answering',
'image-feature-extraction', 'summarization', 'zero-shot-image-classification',
'object-detection', 'image-segmentation', 'image-to-image', 'image-to-text',
'audio-classification', 'visual-question-answering', 'text-to-video',
'zero-shot-classification', 'depth-estimation', 'text-ranking', 'image-to-video',
'multiple-choice', 'unconditional-image-generation', 'video-classification',
'text-to-audio', 'time-series-forecasting', 'any-to-any', 'video-text-to-text',
'table-question-answering',
]
def load_models_data():
"""
Loads the pre-processed models data using the HF datasets library.
"""
overall_start_time = time.time()
print(f"Attempting to load dataset from Hugging Face Hub: {HF_DATASET_ID}")
# These are the columns expected to be in the pre-processed dataset.
expected_cols = [
'id', 'downloads', 'downloadsAllTime', 'likes', 'pipeline_tag', 'tags', 'params',
'size_category', 'organization', 'has_audio', 'has_speech', 'has_music',
'has_robot', 'has_bio', 'has_med', 'has_series', 'has_video', 'has_image',
'has_text', 'has_science', 'is_audio_speech', 'is_biomed',
'data_download_timestamp'
]
try:
# Load the dataset using the datasets library
# It will be cached locally after the first run.
dataset_dict = load_dataset(HF_DATASET_ID)
if not dataset_dict:
raise ValueError(f"Dataset '{HF_DATASET_ID}' loaded but appears empty.")
# Get the name of the first split (e.g., 'train')
split_name = list(dataset_dict.keys())[0]
print(f"Using dataset split: '{split_name}'. Converting to Pandas.")
# Convert the dataset object to a Pandas DataFrame
df = dataset_dict[split_name].to_pandas()
elapsed = time.time() - overall_start_time
# Validate that the loaded data has the columns we expect.
missing_cols = [col for col in expected_cols if col not in df.columns]
if missing_cols:
raise ValueError(f"Loaded dataset is missing expected columns: {missing_cols}.")
# --- Diagnostic for 'has_robot' after loading ---
if 'has_robot' in df.columns:
robot_count = df['has_robot'].sum()
print(f"DIAGNOSTIC (Dataset Load): 'has_robot' column found. Number of True values: {robot_count}")
else:
print("DIAGNOSTIC (Dataset Load): 'has_robot' column NOT FOUND.")
# --- End Diagnostic ---
msg = f"Successfully loaded dataset from HF Hub in {elapsed:.2f}s. Shape: {df.shape}"
print(msg)
return df, True, msg
except Exception as e:
err_msg = f"Failed to load dataset from Hugging Face Hub. Error: {e}"
print(err_msg)
return pd.DataFrame(), False, err_msg
def make_treemap_data(df, count_by, top_k=25, tag_filter=None, pipeline_filter=None, size_filter=None, skip_orgs=None):
if df is None or df.empty: return pd.DataFrame()
filtered_df = df.copy()
col_map = { "Audio & Speech": "is_audio_speech", "Music": "has_music", "Robotics": "has_robot",
"Biomedical": "is_biomed", "Time series": "has_series", "Sciences": "has_science",
"Video": "has_video", "Images": "has_image", "Text": "has_text"}
if tag_filter and tag_filter in col_map:
target_col = col_map[tag_filter]
if target_col in filtered_df.columns:
filtered_df = filtered_df[filtered_df[target_col]]
else:
print(f"Warning: Tag filter column '{col_map[tag_filter]}' not found in DataFrame.")
if pipeline_filter:
if "pipeline_tag" in filtered_df.columns:
# Ensure the comparison works even if pipeline_tag has NaNs or mixed types
filtered_df = filtered_df[filtered_df["pipeline_tag"].astype(str) == pipeline_filter]
else:
print(f"Warning: 'pipeline_tag' column not found for filtering.")
if size_filter and size_filter != "None" and size_filter in MODEL_SIZE_RANGES.keys():
if 'size_category' in filtered_df.columns:
filtered_df = filtered_df[filtered_df['size_category'] == size_filter]
else:
print("Warning: 'size_category' column not found for filtering.")
if skip_orgs and len(skip_orgs) > 0:
if "organization" in filtered_df.columns:
filtered_df = filtered_df[~filtered_df["organization"].isin(skip_orgs)]
else:
print("Warning: 'organization' column not found for filtering.")
if filtered_df.empty: return pd.DataFrame()
# Ensure the metric column is numeric and handle potential missing values
if count_by not in filtered_df.columns:
print(f"Warning: Metric column '{count_by}' not found. Using 0.")
filtered_df[count_by] = 0.0
filtered_df[count_by] = pd.to_numeric(filtered_df[count_by], errors="coerce").fillna(0.0)
# Group and get top organizations
org_totals = filtered_df.groupby("organization")[count_by].sum().nlargest(top_k, keep='first')
top_orgs_list = org_totals.index.tolist()
# Prepare data for treemap
treemap_data = filtered_df[filtered_df["organization"].isin(top_orgs_list)][["id", "organization", count_by]].copy()
treemap_data["root"] = "models"
# Ensure numeric again for the final slice
treemap_data[count_by] = pd.to_numeric(treemap_data[count_by], errors="coerce").fillna(0.0)
return treemap_data
def create_treemap(treemap_data, count_by, title=None):
if treemap_data.empty:
fig = px.treemap(names=["No data matches filters"], parents=[""], values=[1])
fig.update_layout(title="No data matches the selected filters", margin=dict(t=50, l=25, r=25, b=25))
return fig
fig = px.treemap(
treemap_data, path=["root", "organization", "id"], values=count_by,
title=title or f"HuggingFace Models - {count_by.capitalize()} by Organization",
color_discrete_sequence=px.colors.qualitative.Plotly
)
fig.update_layout(margin=dict(t=50, l=25, r=25, b=25))
fig.update_traces(textinfo="label+value+percent root", hovertemplate="<b>%{label}</b><br>%{value:,} " + count_by + "<br>%{percentRoot:.2%} of total<extra></extra>")
return fig
with gr.Blocks(title="HuggingFace Model Explorer", fill_width=True) as demo:
models_data_state = gr.State(pd.DataFrame())
loading_complete_state = gr.State(False)
with gr.Row(): gr.Markdown("# HuggingFace Models TreeMap Visualization")
with gr.Row():
with gr.Column(scale=1):
count_by_dropdown = gr.Dropdown(label="Metric", choices=[("Downloads (last 30 days)", "downloads"), ("Downloads (All Time)", "downloadsAllTime"), ("Likes", "likes")], value="downloads")
filter_choice_radio = gr.Radio(label="Filter Type", choices=["None", "Tag Filter", "Pipeline Filter"], value="None")
tag_filter_dropdown = gr.Dropdown(label="Select Tag", choices=TAG_FILTER_CHOICES, value=None, visible=False)
pipeline_filter_dropdown = gr.Dropdown(label="Select Pipeline Tag", choices=PIPELINE_TAGS, value=None, visible=False)
size_filter_dropdown = gr.Dropdown(label="Model Size Filter", choices=["None"] + list(MODEL_SIZE_RANGES.keys()), value="None")
top_k_slider = gr.Slider(label="Number of Top Organizations", minimum=5, maximum=50, value=25, step=5)
skip_orgs_textbox = gr.Textbox(label="Organizations to Skip (comma-separated)", value="TheBloke,MaziyarPanahi,unsloth,modularai,Gensyn,bartowski")
generate_plot_button = gr.Button(value="Generate Plot", variant="primary", interactive=False)
with gr.Column(scale=3):
plot_output = gr.Plot()
status_message_md = gr.Markdown("Initializing...")
data_info_md = gr.Markdown("")
def _update_button_interactivity(is_loaded_flag):
return gr.update(interactive=is_loaded_flag)
loading_complete_state.change(fn=_update_button_interactivity, inputs=loading_complete_state, outputs=generate_plot_button)
def _toggle_filters_visibility(choice):
return gr.update(visible=choice == "Tag Filter"), gr.update(visible=choice == "Pipeline Filter")
filter_choice_radio.change(fn=_toggle_filters_visibility, inputs=filter_choice_radio, outputs=[tag_filter_dropdown, pipeline_filter_dropdown])
def ui_load_data_controller(progress=gr.Progress()):
progress(0, desc=f"Loading dataset '{HF_DATASET_ID}' from Hugging Face Hub...")
print("ui_load_data_controller called.")
status_msg_ui = "Loading data..."
data_info_text = ""
current_df = pd.DataFrame()
load_success_flag = False
data_as_of_date_display = "N/A"
try:
# Call the load function that uses the datasets library.
current_df, load_success_flag, status_msg_from_load = load_models_data()
if load_success_flag:
progress(0.9, desc="Processing loaded data...")
# Get the data timestamp from the loaded file
if 'data_download_timestamp' in current_df.columns and not current_df.empty and pd.notna(current_df['data_download_timestamp'].iloc[0]):
timestamp_from_parquet = pd.to_datetime(current_df['data_download_timestamp'].iloc[0])
# Ensure the timestamp is timezone-aware for consistent formatting
if timestamp_from_parquet.tzinfo is None:
timestamp_from_parquet = timestamp_from_parquet.tz_localize('UTC')
data_as_of_date_display = timestamp_from_parquet.strftime('%B %d, %Y, %H:%M:%S %Z')
else:
data_as_of_date_display = "Pre-processed (date unavailable)"
# Create summary text for the UI
size_dist_lines = []
if 'size_category' in current_df.columns:
for cat in MODEL_SIZE_RANGES.keys():
count = (current_df['size_category'] == cat).sum()
size_dist_lines.append(f" - {cat}: {count:,} models")
else: size_dist_lines.append(" - Size category information not available.")
size_dist = "\n".join(size_dist_lines)
data_info_text = (f"### Data Information\n"
f"- Overall Status: {status_msg_from_load}\n"
f"- Total models loaded: {len(current_df):,}\n"
f"- Data as of: {data_as_of_date_display}\n"
f"- Size categories:\n{size_dist}")
status_msg_ui = "Data loaded successfully. Ready to generate plot."
else:
data_info_text = f"### Data Load Failed\n- {status_msg_from_load}"
status_msg_ui = status_msg_from_load
except Exception as e:
status_msg_ui = f"An unexpected error occurred in ui_load_data_controller: {str(e)}"
data_info_text = f"### Critical Error\n- {status_msg_ui}"
print(f"Critical error in ui_load_data_controller: {e}")
load_success_flag = False
return current_df, load_success_flag, data_info_text, status_msg_ui
def ui_generate_plot_controller(metric_choice, filter_type, tag_choice, pipeline_choice,
size_choice, k_orgs, skip_orgs_input, df_current_models, progress=gr.Progress()):
if df_current_models is None or df_current_models.empty:
empty_fig = create_treemap(pd.DataFrame(), metric_choice, "Error: Model Data Not Loaded")
error_msg = "Model data is not loaded or is empty. Please wait for data to load."
gr.Warning(error_msg)
return empty_fig, error_msg
progress(0.1, desc="Preparing data for visualization...")
tag_to_use = tag_choice if filter_type == "Tag Filter" else None
pipeline_to_use = pipeline_choice if filter_type == "Pipeline Filter" else None
size_to_use = size_choice if size_choice != "None" else None
orgs_to_skip = [org.strip() for org in skip_orgs_input.split(',') if org.strip()] if skip_orgs_input else []
treemap_df = make_treemap_data(df_current_models, metric_choice, k_orgs, tag_to_use, pipeline_to_use, size_to_use, orgs_to_skip)
progress(0.7, desc="Generating Plotly visualization...")
title_labels = {"downloads": "Downloads (last 30 days)", "downloadsAllTime": "Downloads (All Time)", "likes": "Likes"}
chart_title = f"HuggingFace Models - {title_labels.get(metric_choice, metric_choice)} by Organization"
plotly_fig = create_treemap(treemap_df, metric_choice, chart_title)
if treemap_df.empty:
plot_stats_md = "No data matches the selected filters. Try adjusting your filters."
else:
total_items_in_plot = len(treemap_df['id'].unique())
total_value_in_plot = treemap_df[metric_choice].sum()
plot_stats_md = (f"## Plot Statistics\n- **Models shown**: {total_items_in_plot:,}\n- **Total {metric_choice}**: {int(total_value_in_plot):,}")
return plotly_fig, plot_stats_md
# On app load, call the controller to fetch data using the datasets library.
demo.load(
fn=ui_load_data_controller,
inputs=[],
outputs=[models_data_state, loading_complete_state, data_info_md, status_message_md]
)
generate_plot_button.click(
fn=ui_generate_plot_controller,
inputs=[count_by_dropdown, filter_choice_radio, tag_filter_dropdown, pipeline_filter_dropdown,
size_filter_dropdown, top_k_slider, skip_orgs_textbox, models_data_state],
outputs=[plot_output, status_message_md]
)
if __name__ == "__main__":
print(f"Application starting. Data will be loaded from Hugging Face dataset: {HF_DATASET_ID}")
# Increase the queue size for potentially busy traffic if hosted
demo.queue().launch()
# --- END OF FILE app.py --- |