Anindyadeep
initial commit
ebbfbd3
raw
history blame
1.79 kB
import gradio as gr
import matplotlib.pyplot as plt
import numpy as np
import torch
from PIL import Image, ImageDraw
from transformers import AutoImageProcessor, AutoModelForObjectDetection
description = """
## This interface is made with πŸ€— Gradio.
Simply upload an image of any person wearning/not-wearing helmet.
"""
image_processor = AutoImageProcessor.from_pretrained(
"devonho/detr-resnet-50_finetuned_cppe5"
)
model = AutoModelForObjectDetection.from_pretrained(
"devonho/detr-resnet-50_finetuned_cppe5"
)
# Gradio Components
image_in = gr.components.Image()
image_out = gr.components.Image()
def model_inference(img):
with torch.no_grad():
inputs = image_processor(images=img, return_tensors="pt")
outputs = model(**inputs)
target_sizes = torch.tensor([img.size[::-1]])
results = image_processor.post_process_object_detection(
outputs, threshold=0.5, target_sizes=target_sizes
)[0]
return results
def plot_results(image):
image = Image.fromarray(np.uint8(image))
results = model_inference(img=image)
draw = ImageDraw.Draw(image)
for score, label, box in zip(
results["scores"], results["labels"], results["boxes"]
):
score = score.item()
box = [round(i, 2) for i in box.tolist()]
x, y, x2, y2 = tuple(box)
draw.rectangle((x, y, x2, y2), outline="red", width=1)
draw.text((x, y), model.config.id2label[label.item()], fill="white")
draw.text((x+0.5, y-0.5), text=str(score), fill='green' if score > 0.7 else 'red')
return image
Iface = gr.Interface(
fn=plot_results,
inputs=[image_in],
outputs=image_out,
title="Object Detection Using Fine-Tuned Vision Transformers",
description=description,
).launch()