# Norwegian RAG Chatbot Project Structure ## Overview This document outlines the project structure for our lightweight Norwegian RAG chatbot implementation that uses Hugging Face's Inference API instead of running models locally. ## Directory Structure ``` chatbot_project/ ├── design/ # Design documents │ ├── rag_architecture.md │ ├── document_processing.md │ └── chat_interface.md ├── research/ # Research findings │ └── norwegian_llm_research.md ├── src/ # Source code │ ├── api/ # API integration │ │ ├── __init__.py │ │ ├── huggingface_api.py # HF Inference API integration │ │ └── config.py # API configuration │ ├── document_processing/ # Document processing │ │ ├── __init__.py │ │ ├── extractor.py # Text extraction from documents │ │ ├── chunker.py # Text chunking │ │ └── processor.py # Main document processor │ ├── rag/ # RAG implementation │ │ ├── __init__.py │ │ ├── retriever.py # Document retrieval │ │ └── generator.py # Response generation │ ├── web/ # Web interface │ │ ├── __init__.py │ │ ├── app.py # Gradio app │ │ └── embed.py # Embedding functionality │ ├── utils/ # Utilities │ │ ├── __init__.py │ │ └── helpers.py # Helper functions │ └── main.py # Main application entry point ├── data/ # Data storage │ ├── documents/ # Original documents │ └── processed/ # Processed documents and embeddings ├── tests/ # Tests │ ├── test_api.py │ ├── test_document_processing.py │ └── test_rag.py ├── venv/ # Virtual environment ├── requirements-ultra-light.txt # Lightweight dependencies ├── requirements.txt # Original requirements (for reference) └── README.md # Project documentation ``` ## Key Components ### 1. API Integration (`src/api/`) - `huggingface_api.py`: Integration with Hugging Face Inference API for both LLM and embedding models - `config.py`: Configuration for API endpoints, model IDs, and API keys ### 2. Document Processing (`src/document_processing/`) - `extractor.py`: Extract text from various document formats - `chunker.py`: Split documents into manageable chunks - `processor.py`: Orchestrate the document processing pipeline ### 3. RAG Implementation (`src/rag/`) - `retriever.py`: Retrieve relevant document chunks based on query - `generator.py`: Generate responses using retrieved context ### 4. Web Interface (`src/web/`) - `app.py`: Gradio web interface for the chatbot - `embed.py`: Generate embedding code for website integration ### 5. Main Application (`src/main.py`) - Entry point for the application - Orchestrates the different components ## Implementation Approach 1. **Remote Model Execution**: Use Hugging Face's Inference API for both LLM and embedding models 2. **Lightweight Document Processing**: Process documents locally but use remote APIs for embedding generation 3. **Simple Vector Storage**: Store embeddings in simple file-based format rather than dedicated vector database 4. **Gradio Interface**: Create a simple but effective chat interface using Gradio 5. **Hugging Face Spaces Deployment**: Deploy the final solution to Hugging Face Spaces