import os import streamlit as st from st_aggrid import AgGrid import pandas as pd from transformers import pipeline, T5ForConditionalGeneration, T5Tokenizer # Set the page layout for Streamlit st.set_page_config(layout="wide") # CSS styling # ... (keep your existing CSS code) # Initialize TAPAS pipeline tqa = pipeline(task="table-question-answering", model="google/tapas-large-finetuned-wtq", device="cpu") # Initialize T5 tokenizer and model for text generation t5_tokenizer = T5Tokenizer.from_pretrained("t5-small") t5_model = T5ForConditionalGeneration.from_pretrained("t5-small") # File uploader in the sidebar file_name = st.sidebar.file_uploader("Upload file:", type=['csv', 'xlsx']) # File processing and question answering if file_name is None: st.markdown('
Please upload an excel or csv file
', unsafe_allow_html=True) else: try: # Check file type and handle reading accordingly if file_name.name.endswith('.csv'): df = pd.read_csv(file_name, sep=';', encoding='ISO-8859-1') # Adjust encoding if needed elif file_name.name.endswith('.xlsx'): df = pd.read_excel(file_name, engine='openpyxl') # Use openpyxl to read .xlsx files else: st.error("Unsupported file type") df = None if df is not None: numeric_columns = df.select_dtypes(include=['object']).columns for col in numeric_columns: df[col] = pd.to_numeric(df[col], errors='ignore') st.write("Original Data:") st.write(df) df_numeric = df.copy() df = df.astype(str) # Display the first 5 rows of the dataframe in an editable grid grid_response = AgGrid( df.head(5), columns_auto_size_mode='FIT_CONTENTS', editable=True, height=300, width='100%', ) except Exception as e: st.error(f"Error reading file: {str(e)}") # User input for the question question = st.text_input('Type your question') # Process the answer using TAPAS and T5 with st.spinner(): if st.button('Answer'): try: raw_answer = tqa(table=df, query=question, truncation=True) st.markdown("Raw Result From TAPAS:
", unsafe_allow_html=True) st.success(raw_answer) answer = raw_answer['answer'] aggregator = raw_answer.get('aggregator', '') coordinates = raw_answer.get('coordinates', []) cells = raw_answer.get('cells', []) if aggregator == 'SUM': # Convert cell values to numbers and sum them values = [float(cell) for cell in cells if cell.replace('.', '').isdigit()] total_sum = sum(values) base_sentence = f"The sum for '{question}' is {total_sum}." else: # Construct a base sentence for other aggregators or no aggregation base_sentence = f"The answer from TAPAS for '{question}' is {answer}." if coordinates and cells: rows_info = [f"Row {coordinate[0] + 1}, Column '{df.columns[coordinate[1]]}' with value {cell}" for coordinate, cell in zip(coordinates, cells)] rows_description = " and ".join(rows_info) base_sentence += f" This includes the following data: