Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,7 +1,7 @@
|
|
1 |
import os
|
2 |
import streamlit as st
|
3 |
-
import pandas as pd
|
4 |
from st_aggrid import AgGrid
|
|
|
5 |
from transformers import pipeline, T5ForConditionalGeneration, T5Tokenizer
|
6 |
|
7 |
# Set the page layout for Streamlit
|
@@ -14,59 +14,19 @@ style = '''
|
|
14 |
header {visibility: hidden;}
|
15 |
div.block-container {padding-top:4rem;}
|
16 |
section[data-testid="stSidebar"] div:first-child {
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
}
|
23 |
-
.button-container {
|
24 |
-
display: flex;
|
25 |
-
justify-content: center;
|
26 |
-
margin-top: 50px;
|
27 |
-
}
|
28 |
-
.upload-button {
|
29 |
-
font-size: 1.5rem;
|
30 |
-
padding: 15px 30px;
|
31 |
-
background-color: #4CAF50;
|
32 |
-
color: white;
|
33 |
-
border-radius: 8px;
|
34 |
-
cursor: pointer;
|
35 |
-
border: none;
|
36 |
-
}
|
37 |
-
.upload-button:hover {
|
38 |
-
background-color: #45a049;
|
39 |
-
}
|
40 |
-
.file-upload-container {
|
41 |
-
margin-top: 20px;
|
42 |
-
display: none;
|
43 |
-
}
|
44 |
</style>
|
45 |
'''
|
46 |
st.markdown(style, unsafe_allow_html=True)
|
47 |
|
48 |
-
|
49 |
-
st.markdown('<p style="font-family:sans-serif;font-size: 1.
|
50 |
-
st.markdown(
|
51 |
-
st.markdown(
|
52 |
-
st.markdown("<p style='font-family:sans-serif;font-size: 0.8rem;'>Pre-trained TAPAS model runs on max 64 rows and 32 columns data. Make sure the file data doesn't exceed these dimensions.</p>", unsafe_allow_html=True)
|
53 |
-
|
54 |
-
# Create a large clickable button for the user to interact with
|
55 |
-
if st.button("Click to upload file", key="upload_button", help="Click here to upload a file", use_container_width=True):
|
56 |
-
# Show the file uploader widget when the button is clicked
|
57 |
-
uploaded_file = st.file_uploader("Upload your file", type=["csv", "xlsx"])
|
58 |
-
|
59 |
-
# Check if the user uploaded a file
|
60 |
-
if uploaded_file is not None:
|
61 |
-
st.success(f"File '{uploaded_file.name}' uploaded successfully!")
|
62 |
-
|
63 |
-
# Process the file (example: display the first 5 rows)
|
64 |
-
if uploaded_file.name.endswith('.csv'):
|
65 |
-
df = pd.read_csv(uploaded_file)
|
66 |
-
st.write(df.head())
|
67 |
-
elif uploaded_file.name.endswith('.xlsx'):
|
68 |
-
df = pd.read_excel(uploaded_file)
|
69 |
-
st.write(df.head())
|
70 |
|
71 |
# Initialize TAPAS pipeline
|
72 |
tqa = pipeline(task="table-question-answering",
|
@@ -77,46 +37,165 @@ tqa = pipeline(task="table-question-answering",
|
|
77 |
t5_tokenizer = T5Tokenizer.from_pretrained("t5-small")
|
78 |
t5_model = T5ForConditionalGeneration.from_pretrained("t5-small")
|
79 |
|
80 |
-
#
|
81 |
-
|
82 |
|
83 |
-
#
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
98 |
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import os
|
2 |
import streamlit as st
|
|
|
3 |
from st_aggrid import AgGrid
|
4 |
+
import pandas as pd
|
5 |
from transformers import pipeline, T5ForConditionalGeneration, T5Tokenizer
|
6 |
|
7 |
# Set the page layout for Streamlit
|
|
|
14 |
header {visibility: hidden;}
|
15 |
div.block-container {padding-top:4rem;}
|
16 |
section[data-testid="stSidebar"] div:first-child {
|
17 |
+
padding-top: 0;
|
18 |
+
}
|
19 |
+
.font {
|
20 |
+
text-align:center;
|
21 |
+
font-family:sans-serif;font-size: 1.25rem;}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
22 |
</style>
|
23 |
'''
|
24 |
st.markdown(style, unsafe_allow_html=True)
|
25 |
|
26 |
+
st.markdown('<p style="font-family:sans-serif;font-size: 1.9rem;"> HertogAI Table Q&A using TAPAS and Model Language</p>', unsafe_allow_html=True)
|
27 |
+
st.markdown('<p style="font-family:sans-serif;font-size: 1.0rem;"> This code is based on Jordan Skinner. I recoded and enhanced it </p>', unsafe_allow_html=True)
|
28 |
+
st.markdown("<p style='font-family:sans-serif;font-size: 1.2rem;'>Pre-trained TAPAS model runs on max 64 rows and 32 columns data. Make sure the file data doesn't exceed these dimensions.</p>", unsafe_allow_html=True)
|
29 |
+
st.markdown("<p style='font-family:sans-serif;font-size: 1.5rem;'>Click the side bar > to upload your file.</p>", unsafe_allow_html=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
30 |
|
31 |
# Initialize TAPAS pipeline
|
32 |
tqa = pipeline(task="table-question-answering",
|
|
|
37 |
t5_tokenizer = T5Tokenizer.from_pretrained("t5-small")
|
38 |
t5_model = T5ForConditionalGeneration.from_pretrained("t5-small")
|
39 |
|
40 |
+
# File uploader in the sidebar
|
41 |
+
file_name = st.sidebar.file_uploader("Upload file:", type=['csv', 'xlsx'])
|
42 |
|
43 |
+
# File processing and question answering
|
44 |
+
if file_name is None:
|
45 |
+
st.markdown('<p class="font">Please upload an excel or csv file </p>', unsafe_allow_html=True)
|
46 |
+
else:
|
47 |
+
try:
|
48 |
+
# Check file type and handle reading accordingly
|
49 |
+
if file_name.name.endswith('.csv'):
|
50 |
+
df = pd.read_csv(file_name, sep=';', encoding='ISO-8859-1') # Adjust encoding if needed
|
51 |
+
elif file_name.name.endswith('.xlsx'):
|
52 |
+
df = pd.read_excel(file_name, engine='openpyxl') # Use openpyxl to read .xlsx files
|
53 |
+
else:
|
54 |
+
st.error("Unsupported file type")
|
55 |
+
df = None
|
56 |
+
|
57 |
+
# Continue with further processing if df is loaded
|
58 |
+
if df is not None:
|
59 |
+
numeric_columns = df.select_dtypes(include=['object']).columns
|
60 |
+
for col in numeric_columns:
|
61 |
+
df[col] = pd.to_numeric(df[col], errors='ignore')
|
62 |
+
|
63 |
+
st.write("Original Data:")
|
64 |
+
st.write(df)
|
65 |
+
|
66 |
+
# Create a copy for numerical operations
|
67 |
+
df_numeric = df.copy()
|
68 |
+
df = df.astype(str)
|
69 |
+
|
70 |
+
# Display the first 5 rows of the dataframe in an editable grid
|
71 |
+
grid_response = AgGrid(
|
72 |
+
df.head(5),
|
73 |
+
columns_auto_size_mode='FIT_CONTENTS',
|
74 |
+
editable=True,
|
75 |
+
height=300,
|
76 |
+
width='100%',
|
77 |
+
)
|
78 |
|
79 |
+
except Exception as e:
|
80 |
+
st.error(f"Error reading file: {str(e)}")
|
81 |
+
|
82 |
+
# User input for the question
|
83 |
+
question = st.text_input('Type your question')
|
84 |
+
|
85 |
+
# Process the answer using TAPAS and T5
|
86 |
+
with st.spinner():
|
87 |
+
if st.button('Answer'):
|
88 |
+
try:
|
89 |
+
# Get the raw answer from TAPAS
|
90 |
+
raw_answer = tqa(table=df, query=question, truncation=True)
|
91 |
+
|
92 |
+
st.markdown("<p style='font-family:sans-serif;font-size: 0.9rem;'> Raw Result From TAPAS: </p>",
|
93 |
+
unsafe_allow_html=True)
|
94 |
+
st.success(raw_answer)
|
95 |
+
|
96 |
+
# Extract relevant information from the TAPAS result
|
97 |
+
answer = raw_answer['answer']
|
98 |
+
aggregator = raw_answer.get('aggregator', '')
|
99 |
+
coordinates = raw_answer.get('coordinates', [])
|
100 |
+
cells = raw_answer.get('cells', [])
|
101 |
+
|
102 |
+
# Construct a base sentence replacing 'SUM' with the query term
|
103 |
+
base_sentence = f"The {question.lower()} of the selected data is {answer}."
|
104 |
+
if coordinates and cells:
|
105 |
+
rows_info = [f"Row {coordinate[0] + 1}, Column '{df.columns[coordinate[1]]}' with value {cell}"
|
106 |
+
for coordinate, cell in zip(coordinates, cells)]
|
107 |
+
rows_description = " and ".join(rows_info)
|
108 |
+
base_sentence += f" This includes the following data: {rows_description}."
|
109 |
+
|
110 |
+
# Generate a fluent response using the T5 model, rephrasing the base sentence
|
111 |
+
input_text = f"Given the question: '{question}', generate a more human-readable response: {base_sentence}"
|
112 |
+
|
113 |
+
# Tokenize the input and generate a fluent response using T5
|
114 |
+
inputs = t5_tokenizer.encode(input_text, return_tensors="pt", max_length=512, truncation=True)
|
115 |
+
summary_ids = t5_model.generate(inputs, max_length=150, num_beams=4, early_stopping=True)
|
116 |
+
|
117 |
+
# Decode the generated text
|
118 |
+
generated_text = t5_tokenizer.decode(summary_ids[0], skip_special_tokens=True)
|
119 |
+
|
120 |
+
# Display the final generated response
|
121 |
+
st.markdown("<p style='font-family:sans-serif;font-size: 0.9rem;'> Final Generated Response with LLM: </p>", unsafe_allow_html=True)
|
122 |
+
st.success(generated_text)
|
123 |
+
|
124 |
+
except Exception as e:
|
125 |
+
st.warning("Please retype your question and make sure to use the column name and cell value correctly.")
|
126 |
+
|
127 |
+
try:
|
128 |
+
# Get raw answer again from TAPAS
|
129 |
+
raw_answer = tqa(table=df, query=question, truncation=True)
|
130 |
+
|
131 |
+
# Display raw result for debugging purposes
|
132 |
+
st.markdown("<p style='font-family:sans-serif;font-size: 0.9rem;'> Raw Result: </p>", unsafe_allow_html=True)
|
133 |
+
st.success(raw_answer)
|
134 |
+
|
135 |
+
# Processing the raw_answer
|
136 |
+
processed_answer = raw_answer['answer'].replace(';', ' ') # Clean the answer text
|
137 |
+
row_idx = raw_answer['coordinates'][0][0] # Row index from TAPAS
|
138 |
+
col_idx = raw_answer['coordinates'][0][1] # Column index from TAPAS
|
139 |
+
column_name = df.columns[col_idx] # Column name from the DataFrame
|
140 |
+
row_data = df.iloc[row_idx].to_dict() # Row data corresponding to the row index
|
141 |
+
|
142 |
+
# Handle different types of answers (e.g., 'SUM', 'MAX', 'MIN', 'AVG', etc.)
|
143 |
+
if 'SUM' in processed_answer:
|
144 |
+
summary_type = 'sum'
|
145 |
+
numeric_value = df_numeric[column_name].sum()
|
146 |
+
elif 'MAX' in processed_answer:
|
147 |
+
summary_type = 'maximum'
|
148 |
+
numeric_value = df_numeric[column_name].max()
|
149 |
+
elif 'MIN' in processed_answer:
|
150 |
+
summary_type = 'minimum'
|
151 |
+
numeric_value = df_numeric[column_name].min()
|
152 |
+
elif 'AVG' in processed_answer or 'AVERAGE' in processed_answer:
|
153 |
+
summary_type = 'average'
|
154 |
+
numeric_value = df_numeric[column_name].mean()
|
155 |
+
elif 'COUNT' in processed_answer:
|
156 |
+
summary_type = 'count'
|
157 |
+
numeric_value = df_numeric[column_name].count()
|
158 |
+
elif 'MEDIAN' in processed_answer:
|
159 |
+
summary_type = 'median'
|
160 |
+
numeric_value = df_numeric[column_name].median()
|
161 |
+
elif 'STD' in processed_answer or 'STANDARD DEVIATION' in processed_answer:
|
162 |
+
summary_type = 'std_dev'
|
163 |
+
numeric_value = df_numeric[column_name].std()
|
164 |
+
else:
|
165 |
+
summary_type = 'value'
|
166 |
+
numeric_value = processed_answer # In case of a general answer
|
167 |
+
|
168 |
+
# Build a natural language response based on the aggregation type
|
169 |
+
if summary_type == 'sum':
|
170 |
+
natural_language_answer = f"The total {column_name} is {numeric_value}."
|
171 |
+
elif summary_type == 'maximum':
|
172 |
+
natural_language_answer = f"The highest {column_name} is {numeric_value}, recorded for '{row_data.get('Name', 'Unknown')}'."
|
173 |
+
elif summary_type == 'minimum':
|
174 |
+
natural_language_answer = f"The lowest {column_name} is {numeric_value}, recorded for '{row_data.get('Name', 'Unknown')}'."
|
175 |
+
elif summary_type == 'average':
|
176 |
+
natural_language_answer = f"The average {column_name} is {numeric_value}."
|
177 |
+
elif summary_type == 'count':
|
178 |
+
natural_language_answer = f"The number of entries in {column_name} is {numeric_value}."
|
179 |
+
elif summary_type == 'median':
|
180 |
+
natural_language_answer = f"The median {column_name} is {numeric_value}."
|
181 |
+
elif summary_type == 'std_dev':
|
182 |
+
natural_language_answer = f"The standard deviation of {column_name} is {numeric_value}."
|
183 |
+
else:
|
184 |
+
natural_language_answer = f"The {column_name} value is {numeric_value} for '{row_data.get('Name', 'Unknown')}'."
|
185 |
+
|
186 |
+
# Display the final natural language answer
|
187 |
+
st.markdown("<p style='font-family:sans-serif;font-size: 0.9rem;'> Analysis Results: </p>", unsafe_allow_html=True)
|
188 |
+
st.success(f"""
|
189 |
+
• Answer: {natural_language_answer}
|
190 |
+
|
191 |
+
Data Location:
|
192 |
+
• Row: {row_idx + 1}
|
193 |
+
• Column: {column_name}
|
194 |
+
|
195 |
+
Additional Context:
|
196 |
+
• Full Row Data: {row_data}
|
197 |
+
• Query Asked: "{question}"
|
198 |
+
""")
|
199 |
+
|
200 |
+
except Exception as e:
|
201 |
+
st.warning("Please retype your question and make sure to use the column name and cell value correctly.")
|