Spaces:
Sleeping
Sleeping
import pandas as pd | |
import streamlit as st | |
from transformers import TapasForQuestionAnswering, TapasTokenizer, T5ForConditionalGeneration, T5Tokenizer | |
import torch | |
# Assuming df is uploaded or pre-defined (you can replace with actual data loading logic) | |
# Example DataFrame (replace with your actual file or data) | |
data = { | |
'Column1': [1, 2, 3, 4], | |
'Column2': [5.5, 6.5, 7.5, 8.5], | |
'Column3': ['a', 'b', 'c', 'd'] | |
} | |
df = pd.DataFrame(data) | |
# Check if DataFrame is valid | |
if df is not None and not df.empty: | |
# Select numeric columns | |
df_numeric = df.select_dtypes(include='number') | |
else: | |
df_numeric = pd.DataFrame() # Empty DataFrame if input is invalid | |
# Load TAPAS model and tokenizer | |
tqa_model = TapasForQuestionAnswering.from_pretrained("google/tapas-large-finetuned-wtq") | |
tqa_tokenizer = TapasTokenizer.from_pretrained("google/tapas-large-finetuned-wtq") | |
# Load T5 model and tokenizer for rephrasing | |
t5_model = T5ForConditionalGeneration.from_pretrained("t5-small") | |
t5_tokenizer = T5Tokenizer.from_pretrained("t5-small") | |
# User input for the question | |
question = st.text_input('Type your question') | |
# Process the answer using TAPAS and T5 | |
with st.spinner(): | |
if st.button('Answer'): | |
try: | |
# Get the raw answer from TAPAS | |
inputs = tqa_tokenizer(table=df, query=question, return_tensors="pt") | |
with torch.no_grad(): | |
outputs = tqa_model(**inputs) | |
raw_answer = tqa_tokenizer.decode(outputs.logits.argmax(dim=-1), skip_special_tokens=True) | |
st.markdown("<p style='font-family:sans-serif;font-size: 0.9rem;'> Raw Result From TAPAS: </p>", unsafe_allow_html=True) | |
st.success(raw_answer) | |
# Extract relevant information from the TAPAS result | |
answer = raw_answer | |
aggregator = "average" # Example aggregator, adjust based on raw_answer if needed | |
coordinates = [] # Example, adjust based on raw_answer | |
cells = [] # Example, adjust based on raw_answer | |
# Construct a base sentence replacing 'SUM' with the query term | |
base_sentence = f"The {question.lower()} of the selected data is {answer}." | |
if coordinates and cells: | |
rows_info = [f"Row {coordinate[0] + 1}, Column '{df.columns[coordinate[1]]}' with value {cell}" | |
for coordinate, cell in zip(coordinates, cells)] | |
rows_description = " and ".join(rows_info) | |
base_sentence += f" This includes the following data: {rows_description}." | |
# Generate a fluent response using the T5 model, rephrasing the base sentence | |
input_text = f"Given the question: '{question}', generate a more human-readable response: {base_sentence}" | |
inputs = t5_tokenizer.encode(input_text, return_tensors="pt", max_length=512, truncation=True) | |
summary_ids = t5_model.generate(inputs, max_length=150, num_beams=4, early_stopping=True) | |
generated_text = t5_tokenizer.decode(summary_ids[0], skip_special_tokens=True) | |
# Display the final generated response | |
st.markdown("<p style='font-family:sans-serif;font-size: 0.9rem;'> Final Generated Response with LLM: </p>", unsafe_allow_html=True) | |
st.success(generated_text) | |
except Exception as e: | |
st.warning("Please retype your question and make sure to use the column name and cell value correctly.") | |
# Assuming 'column_name' exists and is selected or provided by the user | |
# Example of getting 'column_name' from user input (adjust this part according to your app): | |
column_name = st.selectbox("Select a column", df.columns) | |
# Manually fix the aggregator if it returns an incorrect one | |
if 'MEDIAN' in question.upper() and 'AVERAGE' in aggregator.upper(): | |
aggregator = 'MEDIAN' | |
elif 'MIN' in question.upper() and 'AVERAGE' in aggregator.upper(): | |
aggregator = 'MIN' | |
elif 'MAX' in question.upper() and 'AVERAGE' in aggregator.upper(): | |
aggregator = 'MAX' | |
elif 'TOTAL' in question.upper() and 'SUM' in aggregator.upper(): | |
aggregator = 'SUM' | |
# Use the corrected aggregator for further processing | |
summary_type = aggregator.lower() | |
# Check if `column_name` is valid before proceeding | |
if column_name and column_name in df_numeric.columns: | |
# Now, calculate the correct value using pandas based on the corrected aggregator | |
if summary_type == 'sum': | |
numeric_value = df_numeric[column_name].sum() | |
elif summary_type == 'max': | |
numeric_value = df_numeric[column_name].max() | |
elif summary_type == 'min': | |
numeric_value = df_numeric[column_name].min() | |
elif summary_type == 'average': | |
numeric_value = df_numeric[column_name].mean() | |
elif summary_type == 'count': | |
numeric_value = df_numeric[column_name].count() | |
elif summary_type == 'median': | |
numeric_value = df_numeric[column_name].median() | |
elif summary_type == 'std_dev': | |
numeric_value = df_numeric[column_name].std() | |
else: | |
numeric_value = answer # Fallback if something went wrong | |
else: | |
numeric_value = "Invalid column" | |
# Construct a natural language response | |
if summary_type == 'sum': | |
natural_language_answer = f"The total {column_name} is {numeric_value}." | |
elif summary_type == 'maximum': | |
natural_language_answer = f"The highest {column_name} is {numeric_value}." | |
elif summary_type == 'minimum': | |
natural_language_answer = f"The lowest {column_name} is {numeric_value}." | |
elif summary_type == 'average': | |
natural_language_answer = f"The average {column_name} is {numeric_value}." | |
elif summary_type == 'count': | |
natural_language_answer = f"The number of entries in {column_name} is {numeric_value}." | |
elif summary_type == 'median': | |
natural_language_answer = f"The median {column_name} is {numeric_value}." | |
elif summary_type == 'std_dev': | |
natural_language_answer = f"The standard deviation of {column_name} is {numeric_value}." | |
else: | |
natural_language_answer = f"The value for {column_name} is {numeric_value}." | |
# Display the result to the user | |
st.markdown("<p style='font-family:sans-serif;font-size: 0.9rem;'> Analysis Results: </p>", unsafe_allow_html=True) | |
st.success(f""" | |
• Answer: {natural_language_answer} | |
Data Location: | |
• Column: {column_name} | |
Additional Context: | |
• Query Asked: "{question}" | |
""") | |