import streamlit as st from transformers import T5ForConditionalGeneration, T5Tokenizer import torch import random # Load pre-trained T5 model and tokenizer model_name = "t5-small" # You can use "t5-base" or "t5-large" for better quality but slower response model = T5ForConditionalGeneration.from_pretrained(model_name) tokenizer = T5Tokenizer.from_pretrained(model_name) # Set device to GPU if available for faster inference, otherwise fallback to CPU device = torch.device("cuda" if torch.cuda.is_available() else "cpu") model.to(device) # Initialize chat history and conversation context if 'history' not in st.session_state: st.session_state['history'] = [] if 'conversation' not in st.session_state: st.session_state['conversation'] = [] # Define multiple system prompts to control bot's behavior system_prompts = [ "You are a helpful assistant. Respond in a polite, friendly, and informative manner.", "You are a conversational chatbot. Provide friendly, engaging, and empathetic responses.", "You are an informative assistant. Respond clearly and concisely to any questions asked.", "You are a fun, casual chatbot. Keep the conversation light-hearted and interesting." ] # Select a random system prompt to start the conversation def get_system_prompt(): return random.choice(system_prompts) def generate_response(input_text): # If it's the first interaction, add the system prompt to the conversation history if len(st.session_state['history']) == 0: system_prompt = get_system_prompt() st.session_state['conversation'].append(f"System: {system_prompt}") system_input = f"conversation: {system_prompt} " st.session_state['history'].append(system_input) # Prepare the user input by appending it to the history user_input = f"conversation: {input_text} " # Concatenate history (system prompt + user input) full_input = "".join(st.session_state['history']) + user_input # Tokenize input text and generate response from the model input_ids = tokenizer.encode(full_input, return_tensors="pt").to(device) outputs = model.generate(input_ids, max_length=1000, num_beams=5, top_p=0.95, temperature=0.7, pad_token_id=tokenizer.eos_token_id) # Decode the model's output bot_output = tokenizer.decode(outputs[0], skip_special_tokens=True) # Update the history with the new user input and the model's output st.session_state['history'].append(user_input) st.session_state['history'].append(f"bot: {bot_output} ") # Add both user input and bot response to the conversation history for display st.session_state['conversation'].append(f"You: {input_text}") st.session_state['conversation'].append(f"Bot: {bot_output}") return bot_output # Streamlit Interface st.title("Chat with T5") # Display the conversation history if st.session_state['conversation']: for message in st.session_state['conversation']: st.markdown(f"
{message}
", unsafe_allow_html=True) # Create input box for user user_input = st.text_input("You: ", "") if user_input: # Generate and display the bot's response response = generate_response(user_input) st.write(f"Bot: {response}")