import streamlit as st import transformers from transformers import GPT2LMHeadModel, GPT2Tokenizer #from transformers import T5Tokenizer, T5ForConditionalGeneration #model_name = "t5-base" #tokenizer = T5Tokenizer.from_pretrained(model_name) #model = T5ForConditionalGeneration.from_pretrained(model_name) model_name = "indonesia/gpt-2-small-indonesia" model = GPT2LMHeadModel.from_pretrained(model_name) tokenizer = GPT2Tokenizer.from_pretrained(model_name) def generate_response(input_text): input_ids = tokenizer.encode(input_text, return_tensors='pt') outputs = model.generate(input_ids, min_length=5, max_length=300, do_sample=True, num_beams=5, no_repeat_ngram_size=2) generated_text = tokenizer.decode( outputs[0], skip_special_tokens=True) return generated_text prompt = st.chat_input(placeholder="Say Something!",key=None, max_chars=None, disabled=False, on_submit=None, args=None, kwargs=None) if prompt: with st.chat_message(name="AI",avatar=None): st.write(generate_response(prompt))