import streamlit as st from transformers import AutoModelForCausalLM, AutoTokenizer import torch import random # Load pre-trained DialoGPT-small model and tokenizer model_name = "microsoft/DialoGPT-small" model = AutoModelForCausalLM.from_pretrained(model_name) tokenizer = AutoTokenizer.from_pretrained(model_name) # Set device to GPU if available for faster inference, otherwise fallback to CPU device = torch.device("cuda" if torch.cuda.is_available() else "cpu") model.to(device) # Initialize chat history and conversation context if 'history' not in st.session_state: st.session_state['history'] = [] if 'conversation' not in st.session_state: st.session_state['conversation'] = [] # Define multiple system prompts to control bot's behavior system_prompts = [ "You are a friendly and professional assistant. You respond in a polite and helpful manner.", "You are a casual chatbot that likes to engage in fun and interesting conversations, but always stay respectful.", "You are a helpful assistant. Your goal is to provide clear and precise answers to any questions.", "You are a compassionate and empathetic listener, always responding with kindness and understanding." ] # Select a random system prompt to start the conversation def get_system_prompt(): return random.choice(system_prompts) def generate_response(input_text): # If it's the first interaction, add the system prompt to the conversation history if not st.session_state['history']: system_prompt = get_system_prompt() st.session_state['conversation'].append(f"System: {system_prompt}") system_input_ids = tokenizer.encode(system_prompt + tokenizer.eos_token, return_tensors='pt').to(device) st.session_state['history'] = system_input_ids[0].tolist() # Encode the new user input, add end of string token new_user_input_ids = tokenizer.encode(input_text + tokenizer.eos_token, return_tensors='pt').to(device) # If there is conversation history, append the new input to it if st.session_state['history']: history_tensor = torch.tensor(st.session_state['history']).unsqueeze(0).to(device) bot_input_ids = torch.cat([history_tensor, new_user_input_ids], dim=-1) else: bot_input_ids = new_user_input_ids # Generate a response from the model chat_history_ids = model.generate(bot_input_ids, max_length=1000, pad_token_id=tokenizer.eos_token_id, top_k=50, top_p=0.95, temperature=0.7) # Decode the model's output and add it to the history chat_history_ids = chat_history_ids[:, bot_input_ids.shape[-1]:] # only take the latest generated tokens bot_output = tokenizer.decode(chat_history_ids[0], skip_special_tokens=True) # Update session state history with the new tokens (flattened) st.session_state['history'] = chat_history_ids[0].tolist() # Add both user input and bot response to the conversation history for display st.session_state['conversation'].append(f"You: {input_text}") st.session_state['conversation'].append(f"Bot: {bot_output}") return bot_output # Streamlit Interface st.title("Chat with DialoGPT") # Display the conversation history if st.session_state['conversation']: for message in st.session_state['conversation']: st.markdown(f"
{message}
", unsafe_allow_html=True) # Create input box for user user_input = st.text_input("You: ", "") if user_input: # Generate and display the bot's response response = generate_response(user_input) st.write(f"Bot: {response}")