Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,6 +1,7 @@
|
|
1 |
import streamlit as st
|
2 |
from transformers import AutoModelForCausalLM, AutoTokenizer
|
3 |
import torch
|
|
|
4 |
|
5 |
# Load pre-trained DialoGPT-small model and tokenizer
|
6 |
model_name = "microsoft/DialoGPT-small"
|
@@ -11,24 +12,40 @@ tokenizer = AutoTokenizer.from_pretrained(model_name)
|
|
11 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
12 |
model.to(device)
|
13 |
|
14 |
-
# Initialize chat history
|
15 |
if 'history' not in st.session_state:
|
16 |
st.session_state['history'] = []
|
17 |
if 'conversation' not in st.session_state:
|
18 |
st.session_state['conversation'] = []
|
19 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
20 |
def generate_response(input_text):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
21 |
# Encode the new user input, add end of string token
|
22 |
new_user_input_ids = tokenizer.encode(input_text + tokenizer.eos_token, return_tensors='pt').to(device)
|
23 |
|
24 |
# If there is conversation history, append the new input to it
|
25 |
if st.session_state['history']:
|
26 |
-
# Convert history to a 2D tensor (batch_size x seq_len)
|
27 |
history_tensor = torch.tensor(st.session_state['history']).unsqueeze(0).to(device)
|
28 |
-
# Concatenate history with the new input
|
29 |
bot_input_ids = torch.cat([history_tensor, new_user_input_ids], dim=-1)
|
30 |
else:
|
31 |
-
# If no history, just use the new user input
|
32 |
bot_input_ids = new_user_input_ids
|
33 |
|
34 |
# Generate a response from the model
|
|
|
1 |
import streamlit as st
|
2 |
from transformers import AutoModelForCausalLM, AutoTokenizer
|
3 |
import torch
|
4 |
+
import random
|
5 |
|
6 |
# Load pre-trained DialoGPT-small model and tokenizer
|
7 |
model_name = "microsoft/DialoGPT-small"
|
|
|
12 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
13 |
model.to(device)
|
14 |
|
15 |
+
# Initialize chat history and conversation context
|
16 |
if 'history' not in st.session_state:
|
17 |
st.session_state['history'] = []
|
18 |
if 'conversation' not in st.session_state:
|
19 |
st.session_state['conversation'] = []
|
20 |
|
21 |
+
# Define multiple system prompts to control bot's behavior
|
22 |
+
system_prompts = [
|
23 |
+
"You are a friendly and professional assistant. You respond in a polite and helpful manner.",
|
24 |
+
"You are a casual chatbot that likes to engage in fun and interesting conversations, but always stay respectful.",
|
25 |
+
"You are a helpful assistant. Your goal is to provide clear and precise answers to any questions.",
|
26 |
+
"You are a compassionate and empathetic listener, always responding with kindness and understanding."
|
27 |
+
]
|
28 |
+
|
29 |
+
# Select a random system prompt to start the conversation
|
30 |
+
def get_system_prompt():
|
31 |
+
return random.choice(system_prompts)
|
32 |
+
|
33 |
def generate_response(input_text):
|
34 |
+
# If it's the first interaction, add the system prompt to the conversation history
|
35 |
+
if not st.session_state['history']:
|
36 |
+
system_prompt = get_system_prompt()
|
37 |
+
st.session_state['conversation'].append(f"System: {system_prompt}")
|
38 |
+
system_input_ids = tokenizer.encode(system_prompt + tokenizer.eos_token, return_tensors='pt').to(device)
|
39 |
+
st.session_state['history'] = system_input_ids[0].tolist()
|
40 |
+
|
41 |
# Encode the new user input, add end of string token
|
42 |
new_user_input_ids = tokenizer.encode(input_text + tokenizer.eos_token, return_tensors='pt').to(device)
|
43 |
|
44 |
# If there is conversation history, append the new input to it
|
45 |
if st.session_state['history']:
|
|
|
46 |
history_tensor = torch.tensor(st.session_state['history']).unsqueeze(0).to(device)
|
|
|
47 |
bot_input_ids = torch.cat([history_tensor, new_user_input_ids], dim=-1)
|
48 |
else:
|
|
|
49 |
bot_input_ids = new_user_input_ids
|
50 |
|
51 |
# Generate a response from the model
|