Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,10 +1,9 @@
|
|
1 |
import streamlit as st
|
2 |
from transformers import T5ForConditionalGeneration, T5Tokenizer
|
3 |
import torch
|
4 |
-
import random
|
5 |
|
6 |
# Load pre-trained T5 model and tokenizer
|
7 |
-
model_name = "t5-small" #
|
8 |
model = T5ForConditionalGeneration.from_pretrained(model_name)
|
9 |
tokenizer = T5Tokenizer.from_pretrained(model_name)
|
10 |
|
@@ -12,64 +11,25 @@ tokenizer = T5Tokenizer.from_pretrained(model_name)
|
|
12 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
13 |
model.to(device)
|
14 |
|
15 |
-
#
|
16 |
-
|
17 |
-
st.session_state['history'] = []
|
18 |
-
if 'conversation' not in st.session_state:
|
19 |
-
st.session_state['conversation'] = []
|
20 |
-
|
21 |
-
# Define multiple system prompts to control bot's behavior
|
22 |
-
system_prompts = [
|
23 |
-
"You are a fun, casual chatbot. Keep the conversation light-hearted and interesting.",
|
24 |
-
"You are a friendly assistant. Respond in a polite, friendly, and informative manner.",
|
25 |
-
"You are an informative assistant. Respond clearly and concisely to any questions asked.",
|
26 |
-
"You are a compassionate listener, always responding with kindness and empathy."
|
27 |
-
]
|
28 |
-
|
29 |
-
# Select a random system prompt to start the conversation
|
30 |
-
def get_system_prompt():
|
31 |
-
return random.choice(system_prompts)
|
32 |
|
33 |
def generate_response(input_text):
|
34 |
-
#
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
# Concatenate history (only user input after system prompt)
|
45 |
-
full_input = "".join(st.session_state['history']) + user_input
|
46 |
-
|
47 |
-
# Tokenize input text and generate response from the model
|
48 |
-
input_ids = tokenizer.encode(full_input, return_tensors="pt").to(device)
|
49 |
-
outputs = model.generate(input_ids, max_length=1000, num_beams=5, top_p=0.95, temperature=0.7, pad_token_id=tokenizer.eos_token_id)
|
50 |
-
|
51 |
-
# Decode the model's output
|
52 |
bot_output = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
53 |
|
54 |
-
# Update the history with the new user input and the model's output
|
55 |
-
st.session_state['history'].append(user_input)
|
56 |
-
st.session_state['history'].append(f"bot: {bot_output} ")
|
57 |
-
|
58 |
-
# Add both user input and bot response to the conversation history for display
|
59 |
-
st.session_state['conversation'].append(f"You: {input_text}")
|
60 |
-
st.session_state['conversation'].append(f"Bot: {bot_output}")
|
61 |
-
|
62 |
return bot_output
|
63 |
|
64 |
-
#
|
65 |
-
st.title("Chat with T5")
|
66 |
-
|
67 |
-
# Display the conversation history
|
68 |
-
if st.session_state['conversation']:
|
69 |
-
for message in st.session_state['conversation']:
|
70 |
-
st.markdown(f"<p style='color:gray; padding:5px;'>{message}</p>", unsafe_allow_html=True)
|
71 |
-
|
72 |
-
# Create input box for user
|
73 |
user_input = st.text_input("You: ", "")
|
74 |
|
75 |
if user_input:
|
|
|
1 |
import streamlit as st
|
2 |
from transformers import T5ForConditionalGeneration, T5Tokenizer
|
3 |
import torch
|
|
|
4 |
|
5 |
# Load pre-trained T5 model and tokenizer
|
6 |
+
model_name = "t5-small" # Use t5-small for faster responses
|
7 |
model = T5ForConditionalGeneration.from_pretrained(model_name)
|
8 |
tokenizer = T5Tokenizer.from_pretrained(model_name)
|
9 |
|
|
|
11 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
12 |
model.to(device)
|
13 |
|
14 |
+
# Streamlit Interface
|
15 |
+
st.title("Simple Chatbot with T5")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
16 |
|
17 |
def generate_response(input_text):
|
18 |
+
# Prepare the input (as T5 expects a task-based prompt, we'll just prefix with 'translate English to English' for simplicity)
|
19 |
+
input_text = f"conversation: {input_text}"
|
20 |
+
|
21 |
+
# Tokenize input text
|
22 |
+
input_ids = tokenizer.encode(input_text, return_tensors="pt").to(device)
|
23 |
+
|
24 |
+
# Generate a response from the model
|
25 |
+
outputs = model.generate(input_ids, max_length=100, num_beams=5, top_p=0.95, temperature=0.7, pad_token_id=tokenizer.eos_token_id)
|
26 |
+
|
27 |
+
# Decode the model's output to a readable string
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
28 |
bot_output = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
29 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
30 |
return bot_output
|
31 |
|
32 |
+
# Create input box for user to type a message
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
33 |
user_input = st.text_input("You: ", "")
|
34 |
|
35 |
if user_input:
|