Spaces:
Sleeping
Sleeping
import streamlit as st | |
from transformers import AutoModelForCausalLM, AutoTokenizer | |
import torch | |
import random | |
# Load pre-trained DialoGPT-small model and tokenizer | |
model_name = "microsoft/DialoGPT-small" | |
model = AutoModelForCausalLM.from_pretrained(model_name) | |
tokenizer = AutoTokenizer.from_pretrained(model_name) | |
# Set device to GPU if available for faster inference, otherwise fallback to CPU | |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
model.to(device) | |
# Initialize chat history and conversation context | |
if 'history' not in st.session_state: | |
st.session_state['history'] = [] | |
if 'conversation' not in st.session_state: | |
st.session_state['conversation'] = [] | |
# Define multiple system prompts to control bot's behavior | |
system_prompts = [ | |
"You are a friendly and professional assistant. You respond in a polite and helpful manner.", | |
"You are a casual chatbot that likes to engage in fun and interesting conversations, but always stay respectful.", | |
"You are a helpful assistant. Your goal is to provide clear and precise answers to any questions.", | |
"You are a compassionate and empathetic listener, always responding with kindness and understanding." | |
] | |
# Select a random system prompt to start the conversation | |
def get_system_prompt(): | |
return random.choice(system_prompts) | |
def generate_response(input_text): | |
# If it's the first interaction, add the system prompt to the conversation history | |
if len(st.session_state['history']) == 0: | |
system_prompt = get_system_prompt() | |
st.session_state['conversation'].append(f"System: {system_prompt}") | |
system_input_ids = tokenizer.encode(system_prompt + tokenizer.eos_token, return_tensors='pt').to(device) | |
st.session_state['history'] = system_input_ids[0].tolist() # Save only the system prompt to history | |
# Encode the new user input, add end of string token | |
new_user_input_ids = tokenizer.encode(input_text + tokenizer.eos_token, return_tensors='pt').to(device) | |
# Append the new user input to the history | |
if len(st.session_state['history']) > 0: | |
history_tensor = torch.tensor(st.session_state['history']).unsqueeze(0).to(device) | |
bot_input_ids = torch.cat([history_tensor, new_user_input_ids], dim=-1) | |
else: | |
bot_input_ids = new_user_input_ids | |
# Generate a response from the model | |
chat_history_ids = model.generate(bot_input_ids, max_length=1000, pad_token_id=tokenizer.eos_token_id, top_k=50, top_p=0.95, temperature=0.7) | |
# Decode the model's output and add it to the history | |
chat_history_ids = chat_history_ids[:, bot_input_ids.shape[-1]:] # only take the latest generated tokens | |
bot_output = tokenizer.decode(chat_history_ids[0], skip_special_tokens=True) | |
# Update session state history with the new tokens (flattened) | |
st.session_state['history'] = chat_history_ids[0].tolist() | |
# Add both user input and bot response to the conversation history for display | |
st.session_state['conversation'].append(f"You: {input_text}") | |
st.session_state['conversation'].append(f"Bot: {bot_output}") | |
return bot_output | |
# Streamlit Interface | |
st.title("Chat with DialoGPT") | |
# Display the conversation history | |
if st.session_state['conversation']: | |
for message in st.session_state['conversation']: | |
st.markdown(f"<p style='color:gray; padding:5px;'>{message}</p>", unsafe_allow_html=True) | |
# Create input box for user | |
user_input = st.text_input("You: ", "") | |
if user_input: | |
# Generate and display the bot's response | |
response = generate_response(user_input) | |
st.write(f"Bot: {response}") | |