Spaces:
Sleeping
Sleeping
import streamlit as st | |
from transformers import T5ForConditionalGeneration, T5Tokenizer | |
import torch | |
# Load pre-trained model and tokenizer from the "KhantKyaw/T5-small_new_chatbot" | |
model_name = "KhantKyaw/T5-small_new_chatbot" # Use the fine-tuned model | |
model = T5ForConditionalGeneration.from_pretrained(model_name) | |
tokenizer = T5Tokenizer.from_pretrained(model_name) | |
# Set device to GPU if available for faster inference, otherwise fallback to CPU | |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
model.to(device) | |
# Streamlit Interface | |
st.title("Mental Health Chatbot with T5") | |
def generate_response(input_text): | |
input_ids = tokenizer.encode(input_text, return_tensors='pt') | |
outputs = model.generate(input_ids, | |
min_length=5, | |
max_length=300, | |
do_sample=True, num_beams=5, no_repeat_ngram_size=2) | |
generated_text = tokenizer.decode( | |
outputs[0], skip_special_tokens=True) | |
return generated_text | |
prompt = st.chat_input(placeholder="Say Something!",key=None, max_chars=None, disabled=False, on_submit=None, args=None, kwargs=None) | |
if prompt: | |
with st.chat_message(name="AI",avatar=None): | |
st.write(generate_response(prompt)) | |