Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -1,109 +1,82 @@
|
|
1 |
-
import
|
2 |
-
import gradio as gr
|
3 |
-
import datetime
|
4 |
-
|
5 |
-
import subprocess
|
6 |
-
|
7 |
-
import torch
|
8 |
-
import pyannote.audio
|
9 |
-
from pyannote.audio.pipelines.speaker_verification import PretrainedSpeakerEmbedding
|
10 |
-
|
11 |
-
from pyannote.audio import Audio
|
12 |
-
from pyannote.core import Segment
|
13 |
-
|
14 |
-
import wave
|
15 |
-
import contextlib
|
16 |
-
|
17 |
-
from sklearn.cluster import AgglomerativeClustering
|
18 |
-
import numpy as np
|
19 |
-
|
20 |
-
model = whisper.load_model("large-v2")
|
21 |
-
embedding_model = PretrainedSpeakerEmbedding(
|
22 |
-
"speechbrain/spkrec-ecapa-voxceleb",
|
23 |
-
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
24 |
-
)
|
25 |
-
|
26 |
-
def transcribe(audio, num_speakers):
|
27 |
-
path, error = convert_to_wav(audio)
|
28 |
-
if error is not None:
|
29 |
-
return error
|
30 |
-
|
31 |
-
duration = get_duration(path)
|
32 |
-
if duration > 4 * 60 * 60:
|
33 |
-
return "Audio duration too long"
|
34 |
-
|
35 |
-
result = model.transcribe(path)
|
36 |
-
segments = result["segments"]
|
37 |
-
|
38 |
-
num_speakers = min(max(round(num_speakers), 1), len(segments))
|
39 |
-
if len(segments) == 1:
|
40 |
-
segments[0]['speaker'] = 'SPEAKER 1'
|
41 |
-
else:
|
42 |
-
embeddings = make_embeddings(path, segments, duration)
|
43 |
-
add_speaker_labels(segments, embeddings, num_speakers)
|
44 |
-
output = get_output(segments)
|
45 |
-
return output
|
46 |
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
if i == 0 or segments[i - 1]["speaker"] != segment["speaker"]:
|
92 |
-
if i != 0:
|
93 |
-
output += '\n\n'
|
94 |
-
output += segment["speaker"] + ' ' + str(time(segment["start"])) + '\n\n'
|
95 |
-
output += segment["text"][1:] + ' '
|
96 |
-
return output
|
97 |
-
|
98 |
-
gr.Interface(
|
99 |
-
title = 'Prueba Whisper Audio to Text ',
|
100 |
-
fn=transcribe,
|
101 |
-
inputs=[
|
102 |
-
gr.inputs.Audio(source="upload", type="filepath"),
|
103 |
-
gr.inputs.Number(default=2, label="Number of Speakers")
|
104 |
-
|
105 |
-
],
|
106 |
-
outputs=[
|
107 |
-
gr.outputs.Textbox(label='Transcript')
|
108 |
]
|
109 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import Dict
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
|
3 |
+
import gradio as gr
|
4 |
+
import whisper
|
5 |
+
from whisper.tokenizer import get_tokenizer
|
6 |
+
|
7 |
+
import classify
|
8 |
+
|
9 |
+
model_cache = {}
|
10 |
+
|
11 |
+
|
12 |
+
def zero_shot_classify(audio_path: str, class_names: str, model_name: str) -> Dict[str, float]:
|
13 |
+
class_names = class_names.split(",")
|
14 |
+
tokenizer = get_tokenizer(multilingual=".en" not in model_name)
|
15 |
+
|
16 |
+
if model_name not in model_cache:
|
17 |
+
model = whisper.load_model(model_name)
|
18 |
+
model_cache[model_name] = model
|
19 |
+
else:
|
20 |
+
model = model_cache[model_name]
|
21 |
+
|
22 |
+
internal_lm_average_logprobs = classify.calculate_internal_lm_average_logprobs(
|
23 |
+
model=model,
|
24 |
+
class_names=class_names,
|
25 |
+
tokenizer=tokenizer,
|
26 |
+
)
|
27 |
+
audio_features = classify.calculate_audio_features(audio_path, model)
|
28 |
+
average_logprobs = classify.calculate_average_logprobs(
|
29 |
+
model=model,
|
30 |
+
audio_features=audio_features,
|
31 |
+
class_names=class_names,
|
32 |
+
tokenizer=tokenizer,
|
33 |
+
)
|
34 |
+
average_logprobs -= internal_lm_average_logprobs
|
35 |
+
scores = average_logprobs.softmax(-1).tolist()
|
36 |
+
return {class_name: score for class_name, score in zip(class_names, scores)}
|
37 |
+
|
38 |
+
|
39 |
+
def main():
|
40 |
+
CLASS_NAMES = "[dog barking],[helicopter whirring],[laughing],[birds chirping],[clock ticking]"
|
41 |
+
AUDIO_PATHS = [
|
42 |
+
"./data/(dog)1-100032-A-0.wav",
|
43 |
+
"./data/(helicopter)1-181071-A-40.wav",
|
44 |
+
"./data/(laughing)1-1791-A-26.wav",
|
45 |
+
"./data/(chirping_birds)1-34495-A-14.wav",
|
46 |
+
"./data/(clock_tick)1-21934-A-38.wav",
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
47 |
]
|
48 |
+
EXAMPLES = []
|
49 |
+
for audio_path in AUDIO_PATHS:
|
50 |
+
EXAMPLES.append([audio_path, CLASS_NAMES, "small"])
|
51 |
+
|
52 |
+
DESCRIPTION = (
|
53 |
+
'<div style="text-align: center;">'
|
54 |
+
"<p>This demo allows you to try out zero-shot audio classification using "
|
55 |
+
"<a href=https://github.com/openai/whisper>Whisper</a>.</p>"
|
56 |
+
"<p>Github: <a href=https://github.com/jumon/zac>https://github.com/jumon/zac</a></p>"
|
57 |
+
"<p>Example audio files are from the <a href=https://github.com/karolpiczak/ESC-50>ESC-50"
|
58 |
+
"</a> dataset (CC BY-NC 3.0).</p></div>"
|
59 |
+
)
|
60 |
+
|
61 |
+
demo = gr.Interface(
|
62 |
+
fn=zero_shot_classify,
|
63 |
+
inputs=[
|
64 |
+
gr.Audio(source="upload", type="filepath", label="Audio File"),
|
65 |
+
gr.Textbox(lines=1, label="Candidate class names (comma-separated)"),
|
66 |
+
gr.Radio(
|
67 |
+
choices=["tiny", "base", "small", "medium", "large"],
|
68 |
+
value="small",
|
69 |
+
label="Model Name",
|
70 |
+
),
|
71 |
+
],
|
72 |
+
outputs="label",
|
73 |
+
examples=EXAMPLES,
|
74 |
+
title="Zero-shot Audio Classification using Whisper",
|
75 |
+
description=DESCRIPTION,
|
76 |
+
)
|
77 |
+
|
78 |
+
demo.launch()
|
79 |
+
|
80 |
+
|
81 |
+
if __name__ == "__main__":
|
82 |
+
main()
|