Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,103 +1,113 @@
|
|
|
|
|
|
|
|
1 |
import gradio as gr
|
2 |
-
from
|
3 |
from langchain.chains.summarize import load_summarize_chain
|
|
|
|
|
4 |
from langchain_community.document_loaders import PyPDFLoader
|
5 |
from langchain_openai import ChatOpenAI
|
6 |
-
from langchain_community.callbacks import get_openai_callback
|
7 |
-
import os
|
8 |
-
from dotenv import load_dotenv
|
9 |
|
10 |
-
os.makedirs("data", exist_ok=True)
|
11 |
|
|
|
12 |
load_dotenv()
|
13 |
-
OPENAI_API_KEY = os.getenv("OPENAI_API_KEY")
|
14 |
|
15 |
-
|
|
|
|
|
|
|
16 |
"""
|
17 |
Summarizes the content of a PDF file using a custom prompt.
|
18 |
|
19 |
Args:
|
20 |
-
pdf_file (
|
21 |
custom_prompt (str): The prompt for summarization.
|
22 |
-
openai_api_key (str
|
23 |
|
24 |
Returns:
|
25 |
-
|
26 |
"""
|
27 |
-
pdf_path = os.path.join("data", "tmp.pdf")
|
28 |
-
|
29 |
-
|
|
|
|
|
|
|
|
|
|
|
30 |
|
31 |
-
api_key = openai_api_key if openai_api_key else OPENAI_API_KEY
|
32 |
-
|
33 |
if not api_key:
|
34 |
return "Error: No OpenAI API key provided.", "N/A"
|
35 |
|
36 |
-
with get_openai_callback() as
|
37 |
try:
|
38 |
model = ChatOpenAI(
|
39 |
-
model="gpt-
|
40 |
-
temperature=0,
|
41 |
-
openai_api_key=api_key
|
42 |
)
|
43 |
|
44 |
loader = PyPDFLoader(pdf_path)
|
45 |
-
|
46 |
-
|
47 |
-
if not custom_prompt.strip():
|
48 |
-
custom_prompt = default_prompt
|
49 |
-
|
50 |
-
prompt_template = (
|
51 |
-
custom_prompt
|
52 |
-
+ """
|
53 |
|
54 |
-
|
|
|
|
|
55 |
|
56 |
-
|
|
|
|
|
|
|
|
|
57 |
)
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
combine_prompt=PROMPT
|
64 |
-
)
|
65 |
-
summary = chain({"input_documents": docs}, return_only_outputs=True)["output_text"]
|
66 |
-
total_cost = cb.total_cost
|
67 |
|
68 |
return summary, f"${total_cost:.4f}"
|
69 |
-
|
70 |
except Exception as e:
|
71 |
-
return f"An error occurred: {str(e)}", "N/A"
|
|
|
72 |
|
73 |
-
default_prompt = (
|
74 |
"Summarize this paper. Return markdown, keep it in a language that scientists understand, "
|
75 |
"but the purpose is to highlight the key takeaways, so that we save time for the reader."
|
76 |
)
|
77 |
-
|
78 |
with gr.Blocks() as demo:
|
79 |
gr.Markdown("# PDF Summarizer 📝")
|
80 |
-
gr.Markdown(
|
|
|
|
|
81 |
|
82 |
with gr.Row():
|
83 |
with gr.Column():
|
|
|
|
|
|
|
84 |
if OPENAI_API_KEY is None:
|
85 |
-
|
86 |
-
|
87 |
-
type="password",
|
88 |
-
placeholder="Enter your OpenAI API key."
|
89 |
-
)
|
90 |
else:
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
placeholder="Enter your OpenAI API key if you want to override the global key."
|
95 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
96 |
prompt_input = gr.Textbox(
|
97 |
label="Custom Prompt",
|
98 |
lines=4,
|
99 |
value=default_prompt,
|
100 |
-
placeholder="Enter your custom summarization prompt here..."
|
101 |
)
|
102 |
pdf_input = gr.File(
|
103 |
label="Upload PDF",
|
@@ -105,20 +115,19 @@ with gr.Blocks() as demo:
|
|
105 |
file_types=[".pdf"],
|
106 |
)
|
107 |
summarize_btn = gr.Button("Summarize")
|
108 |
-
|
109 |
with gr.Column():
|
110 |
cost_output = gr.Textbox(label="Approximate Cost (USD)", interactive=False)
|
111 |
summary_output = gr.Markdown(label="Summary")
|
112 |
-
|
113 |
-
|
114 |
summarize_btn.click(
|
115 |
fn=summarize_pdf,
|
116 |
inputs=[pdf_input, prompt_input, api_key_input],
|
117 |
-
outputs=[summary_output, cost_output]
|
118 |
)
|
119 |
-
|
120 |
gr.Markdown("---")
|
121 |
-
gr.Markdown("Created by [Daniel Herman](https://www.hermandaniel.com)")
|
122 |
-
|
123 |
if __name__ == "__main__":
|
124 |
-
demo.launch()
|
|
|
1 |
+
import os
|
2 |
+
from typing import Optional, Tuple
|
3 |
+
|
4 |
import gradio as gr
|
5 |
+
from dotenv import load_dotenv
|
6 |
from langchain.chains.summarize import load_summarize_chain
|
7 |
+
from langchain_core.prompts import PromptTemplate
|
8 |
+
from langchain_community.callbacks import get_openai_callback
|
9 |
from langchain_community.document_loaders import PyPDFLoader
|
10 |
from langchain_openai import ChatOpenAI
|
|
|
|
|
|
|
11 |
|
|
|
12 |
|
13 |
+
os.makedirs("data", exist_ok=True)
|
14 |
load_dotenv()
|
15 |
+
OPENAI_API_KEY: Optional[str] = os.getenv("OPENAI_API_KEY")
|
16 |
|
17 |
+
|
18 |
+
def summarize_pdf(
|
19 |
+
pdf_file: bytes, custom_prompt: str = "", openai_api_key: Optional[str] = None
|
20 |
+
) -> Tuple[str, str]:
|
21 |
"""
|
22 |
Summarizes the content of a PDF file using a custom prompt.
|
23 |
|
24 |
Args:
|
25 |
+
pdf_file (bytes): The uploaded PDF file as bytes.
|
26 |
custom_prompt (str): The prompt for summarization.
|
27 |
+
openai_api_key (Optional[str]): User-provided OpenAI API key.
|
28 |
|
29 |
Returns:
|
30 |
+
Tuple[str, str]: Summary in markdown format and the cost in USD.
|
31 |
"""
|
32 |
+
pdf_path: str = os.path.join("data", "tmp.pdf")
|
33 |
+
try:
|
34 |
+
with open(pdf_path, "wb") as f:
|
35 |
+
f.write(pdf_file)
|
36 |
+
except IOError as e:
|
37 |
+
return f"Failed to write PDF file: {e}", "N/A"
|
38 |
+
|
39 |
+
api_key: Optional[str] = openai_api_key or OPENAI_API_KEY
|
40 |
|
|
|
|
|
41 |
if not api_key:
|
42 |
return "Error: No OpenAI API key provided.", "N/A"
|
43 |
|
44 |
+
with get_openai_callback() as callback:
|
45 |
try:
|
46 |
model = ChatOpenAI(
|
47 |
+
model="gpt-4-mini", # Verify the correct model name
|
48 |
+
temperature=0.0,
|
49 |
+
openai_api_key=api_key,
|
50 |
)
|
51 |
|
52 |
loader = PyPDFLoader(pdf_path)
|
53 |
+
documents = loader.load_and_split()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
54 |
|
55 |
+
prompt_text: str = custom_prompt.strip() or default_prompt
|
56 |
+
prompt_template: str = f"{prompt_text}\n\n{{text}}\n\nSUMMARY:"
|
57 |
+
prompt = PromptTemplate(template=prompt_template, input_variables=["text"])
|
58 |
|
59 |
+
summarize_chain = load_summarize_chain(
|
60 |
+
llm=model,
|
61 |
+
chain_type="map_reduce",
|
62 |
+
map_prompt=prompt,
|
63 |
+
combine_prompt=prompt,
|
64 |
)
|
65 |
+
|
66 |
+
chain_input = {"input_documents": documents}
|
67 |
+
result = summarize_chain(chain_input, return_only_outputs=True)
|
68 |
+
summary: str = result.get("output_text", "No summary generated.")
|
69 |
+
total_cost: float = callback.total_cost
|
|
|
|
|
|
|
|
|
70 |
|
71 |
return summary, f"${total_cost:.4f}"
|
72 |
+
|
73 |
except Exception as e:
|
74 |
+
return f"An error occurred during summarization: {str(e)}", "N/A"
|
75 |
+
|
76 |
|
77 |
+
default_prompt: str = (
|
78 |
"Summarize this paper. Return markdown, keep it in a language that scientists understand, "
|
79 |
"but the purpose is to highlight the key takeaways, so that we save time for the reader."
|
80 |
)
|
|
|
81 |
with gr.Blocks() as demo:
|
82 |
gr.Markdown("# PDF Summarizer 📝")
|
83 |
+
gr.Markdown(
|
84 |
+
"Upload a PDF, customize your summarization prompt, and get a concise summary along with the processing cost."
|
85 |
+
)
|
86 |
|
87 |
with gr.Row():
|
88 |
with gr.Column():
|
89 |
+
api_key_label: str
|
90 |
+
placeholder_text: str
|
91 |
+
|
92 |
if OPENAI_API_KEY is None:
|
93 |
+
api_key_label = "OpenAI API Key"
|
94 |
+
placeholder_text = "Enter your OpenAI API key."
|
|
|
|
|
|
|
95 |
else:
|
96 |
+
api_key_label = "OpenAI API Key (Optional)"
|
97 |
+
placeholder_text = (
|
98 |
+
"Enter your OpenAI API key if you want to override the global key."
|
|
|
99 |
)
|
100 |
+
|
101 |
+
api_key_input = gr.Textbox(
|
102 |
+
label=api_key_label,
|
103 |
+
type="password",
|
104 |
+
placeholder=placeholder_text,
|
105 |
+
)
|
106 |
prompt_input = gr.Textbox(
|
107 |
label="Custom Prompt",
|
108 |
lines=4,
|
109 |
value=default_prompt,
|
110 |
+
placeholder="Enter your custom summarization prompt here...",
|
111 |
)
|
112 |
pdf_input = gr.File(
|
113 |
label="Upload PDF",
|
|
|
115 |
file_types=[".pdf"],
|
116 |
)
|
117 |
summarize_btn = gr.Button("Summarize")
|
118 |
+
|
119 |
with gr.Column():
|
120 |
cost_output = gr.Textbox(label="Approximate Cost (USD)", interactive=False)
|
121 |
summary_output = gr.Markdown(label="Summary")
|
122 |
+
|
|
|
123 |
summarize_btn.click(
|
124 |
fn=summarize_pdf,
|
125 |
inputs=[pdf_input, prompt_input, api_key_input],
|
126 |
+
outputs=[summary_output, cost_output],
|
127 |
)
|
128 |
+
|
129 |
gr.Markdown("---")
|
130 |
+
gr.Markdown("Created by [Daniel Herman](https://www.hermandaniel.com), check out the code [detrin/llm-pdf-summarization](https://github.com/detrin/llm-pdf-summarization).")
|
131 |
+
|
132 |
if __name__ == "__main__":
|
133 |
+
demo.launch(server_name="0.0.0.0", server_port=3000)
|