pdf-summarizer / app.py
hermanda's picture
Update app.py
ea32a34 verified
import os
from typing import Optional, Tuple
import gradio as gr
from dotenv import load_dotenv
from langchain.chains.summarize import load_summarize_chain
from langchain_core.prompts import PromptTemplate
from langchain_community.callbacks import get_openai_callback
from langchain_community.document_loaders import PyPDFLoader
from langchain_openai import ChatOpenAI
os.makedirs("data", exist_ok=True)
load_dotenv()
OPENAI_API_KEY: Optional[str] = os.getenv("OPENAI_API_KEY")
def summarize_pdf(
pdf_file: bytes, custom_prompt: str = "", openai_api_key: Optional[str] = None
) -> Tuple[str, str]:
"""
Summarizes the content of a PDF file using a custom prompt.
Args:
pdf_file (bytes): The uploaded PDF file as bytes.
custom_prompt (str): The prompt for summarization.
openai_api_key (Optional[str]): User-provided OpenAI API key.
Returns:
Tuple[str, str]: Summary in markdown format and the cost in USD.
"""
pdf_path: str = os.path.join("data", "tmp.pdf")
try:
with open(pdf_path, "wb") as f:
f.write(pdf_file)
except IOError as e:
return f"Failed to write PDF file: {e}", "N/A"
api_key: Optional[str] = openai_api_key or OPENAI_API_KEY
if not api_key:
return "Error: No OpenAI API key provided.", "N/A"
with get_openai_callback() as callback:
try:
model = ChatOpenAI(
model="gpt-4o-mini", # Verify the correct model name
temperature=0.0,
openai_api_key=api_key,
)
loader = PyPDFLoader(pdf_path)
documents = loader.load_and_split()
prompt_text: str = custom_prompt.strip() or default_prompt
prompt_template: str = f"{prompt_text}\n\n{{text}}\n\nSUMMARY:"
prompt = PromptTemplate(template=prompt_template, input_variables=["text"])
summarize_chain = load_summarize_chain(
llm=model,
chain_type="map_reduce",
map_prompt=prompt,
combine_prompt=prompt,
)
chain_input = {"input_documents": documents}
result = summarize_chain(chain_input, return_only_outputs=True)
summary: str = result.get("output_text", "No summary generated.")
total_cost: float = callback.total_cost
return summary, f"${total_cost:.4f}"
except Exception as e:
return f"An error occurred during summarization: {str(e)}", "N/A"
default_prompt: str = (
"Summarize this paper. Return markdown, keep it in a language that scientists understand, "
"but the purpose is to highlight the key takeaways, so that we save time for the reader."
)
with gr.Blocks() as demo:
gr.Markdown("# PDF Summarizer πŸ“")
gr.Markdown(
"Upload a PDF, customize your summarization prompt, and get a concise summary along with the processing cost."
)
with gr.Row():
with gr.Column():
api_key_label: str
placeholder_text: str
if OPENAI_API_KEY is None:
api_key_label = "OpenAI API Key"
placeholder_text = "Enter your OpenAI API key."
else:
api_key_label = "OpenAI API Key (Optional)"
placeholder_text = (
"Enter your OpenAI API key if you want to override the global key."
)
api_key_input = gr.Textbox(
label=api_key_label,
type="password",
placeholder=placeholder_text,
)
prompt_input = gr.Textbox(
label="Custom Prompt",
lines=4,
value=default_prompt,
placeholder="Enter your custom summarization prompt here...",
)
pdf_input = gr.File(
label="Upload PDF",
type="binary",
file_types=[".pdf"],
)
summarize_btn = gr.Button("Summarize")
with gr.Column():
cost_output = gr.Textbox(label="Approximate Cost (USD)", interactive=False)
summary_output = gr.Markdown(label="Summary")
summarize_btn.click(
fn=summarize_pdf,
inputs=[pdf_input, prompt_input, api_key_input],
outputs=[summary_output, cost_output],
)
gr.Markdown("---")
gr.Markdown("Created by [Daniel Herman](https://www.hermandaniel.com), check out the code [detrin/llm-pdf-summarization](https://github.com/detrin/llm-pdf-summarization).")
if __name__ == "__main__":
demo.launch()