Spaces:
Running
Running
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,104 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import gradio as gr
|
3 |
+
from diffusers import StableDiffusionXLPipeline, UNet2DConditionModel, EulerDiscreteScheduler
|
4 |
+
from huggingface_hub import hf_hub_download
|
5 |
+
from safetensors.torch import load_file
|
6 |
+
|
7 |
+
# Initialize model and pipeline once at startup
|
8 |
+
base = "stabilityai/stable-diffusion-xl-base-1.0"
|
9 |
+
repo = "ByteDance/SDXL-Lightning"
|
10 |
+
ckpt = "sdxl_lightning_4step_unet.safetensors"
|
11 |
+
|
12 |
+
# Load model with float32 precision for CPU compatibility
|
13 |
+
unet = UNet2DConditionModel.from_config(base, subfolder="unet").to(torch.float32)
|
14 |
+
unet.load_state_dict(load_file(hf_hub_download(repo, ckpt), device="cpu"))
|
15 |
+
|
16 |
+
# Create pipeline with CPU configuration
|
17 |
+
pipe = StableDiffusionXLPipeline.from_pretrained(
|
18 |
+
base,
|
19 |
+
unet=unet,
|
20 |
+
torch_dtype=torch.float32
|
21 |
+
).to("cpu")
|
22 |
+
|
23 |
+
# Configure scheduler
|
24 |
+
pipe.scheduler = EulerDiscreteScheduler.from_config(
|
25 |
+
pipe.scheduler.config,
|
26 |
+
timestep_spacing="trailing"
|
27 |
+
)
|
28 |
+
|
29 |
+
# Expanded list of predefined elements
|
30 |
+
elements_list = [
|
31 |
+
"Kittens", "Tea", "Home", "Snow", "Young Girl", "Stars",
|
32 |
+
"Blanket", "Books", "Candles", "Flowers", "Moon", "Cookies",
|
33 |
+
"Fireplace", "Pillows", "Mittens", "Lanterns", "Socks",
|
34 |
+
"Hot Chocolate", "Snowflakes", "Winter Scarf", "Marshmallows",
|
35 |
+
"Vintage Clock", "Knitted Sweater", "Fairy Lights", "Porcelain Cup"
|
36 |
+
]
|
37 |
+
|
38 |
+
def generate_image(custom_text, elements, steps):
|
39 |
+
"""Generate image using the provided text, selected elements, and steps"""
|
40 |
+
# Construct the prompt
|
41 |
+
prompt_parts = []
|
42 |
+
if custom_text.strip():
|
43 |
+
prompt_parts.append(custom_text)
|
44 |
+
if elements:
|
45 |
+
prompt_parts.append(", ".join(elements))
|
46 |
+
|
47 |
+
prompt = ", ".join(prompt_parts) or "a beautiful image"
|
48 |
+
|
49 |
+
image = pipe(
|
50 |
+
prompt,
|
51 |
+
num_inference_steps=int(steps),
|
52 |
+
guidance_scale=0,
|
53 |
+
width=768,
|
54 |
+
height=960
|
55 |
+
).images[0]
|
56 |
+
|
57 |
+
return image
|
58 |
+
|
59 |
+
# Create Gradio interface
|
60 |
+
with gr.Blocks(title="Good Night Image Diffuser") as demo:
|
61 |
+
gr.Markdown("# 🌙 Generate Good Night Wish Images")
|
62 |
+
gr.Markdown("Create personalized good night images with your message and favorite elements!")
|
63 |
+
|
64 |
+
with gr.Row():
|
65 |
+
with gr.Column(scale=1):
|
66 |
+
custom_text = gr.Textbox(
|
67 |
+
label="Your Message",
|
68 |
+
value="Create a cozy and heartwarming scene. Use a warm, pastel color palette with soft shadows and subtle textures to evoke comfort and nostalgia. Additional elements to include:",
|
69 |
+
max_lines=3
|
70 |
+
)
|
71 |
+
elements = gr.CheckboxGroup(
|
72 |
+
label="Image Elements",
|
73 |
+
choices=elements_list,
|
74 |
+
value=["Kittens", "Moon"],
|
75 |
+
info="Select elements to include in your image"
|
76 |
+
)
|
77 |
+
steps_slider = gr.Slider(
|
78 |
+
label="Number of Inference Steps",
|
79 |
+
minimum=1,
|
80 |
+
maximum=8,
|
81 |
+
value=4,
|
82 |
+
step=2,
|
83 |
+
info="Adjust the number of denoising steps (more steps can improve quality but take longer)"
|
84 |
+
)
|
85 |
+
generate_btn = gr.Button("✨ Generate Image", variant="primary")
|
86 |
+
|
87 |
+
with gr.Column(scale=1):
|
88 |
+
output_image = gr.Image(
|
89 |
+
label="Generated Image",
|
90 |
+
width=768,
|
91 |
+
height=960,
|
92 |
+
elem_id="output-image"
|
93 |
+
)
|
94 |
+
|
95 |
+
# Connect components
|
96 |
+
generate_btn.click(
|
97 |
+
fn=generate_image,
|
98 |
+
inputs=[custom_text, elements, steps_slider],
|
99 |
+
outputs=output_image,
|
100 |
+
api_name="generate"
|
101 |
+
)
|
102 |
+
|
103 |
+
if __name__ == "__main__":
|
104 |
+
demo.launch()
|