File size: 12,032 Bytes
1a8b103
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0284c70
1a8b103
 
 
 
 
0284c70
 
 
 
1a8b103
 
0284c70
 
1a8b103
 
 
 
 
0284c70
1a8b103
 
 
0284c70
1a8b103
 
68c8d72
9f7d3b3
0284c70
 
1a8b103
0284c70
 
 
 
 
 
 
 
 
 
9f7d3b3
1a8b103
 
 
9f7d3b3
 
 
 
 
 
68c8d72
1a8b103
68c8d72
 
486c196
f005fdc
1a8b103
 
68c8d72
 
9f7d3b3
0284c70
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e3a3202
0284c70
 
 
 
 
 
 
 
 
 
 
1a8b103
0284c70
 
 
e3a3202
0284c70
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1a8b103
0284c70
 
 
1a8b103
0284c70
 
 
 
 
 
 
 
 
 
1a8b103
 
0284c70
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1a8b103
0284c70
1a8b103
 
 
0284c70
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f005fdc
486c196
1a8b103
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
# import gradio as gr
# from qdrant_client import models, QdrantClient
# from sentence_transformers import SentenceTransformer
# from PyPDF2 import PdfReader
# from langchain.text_splitter import RecursiveCharacterTextSplitter
# from langchain.callbacks.manager import CallbackManager
# from langchain.callbacks.streaming_stdout import StreamingStdOutCallbackHandler
# # from langchain.llms import LlamaCpp
# from langchain.vectorstores import Qdrant
# from qdrant_client.http import models
# # from langchain.llms import CTransformers
# from ctransformers import AutoModelForCausalLM





# # loading the embedding model - 

# encoder = SentenceTransformer('jinaai/jina-embedding-b-en-v1')

# print("embedding model loaded.............................")
# print("####################################################")

# # loading the LLM 

# callback_manager = CallbackManager([StreamingStdOutCallbackHandler()])

# print("loading the LLM......................................")

# # llm = LlamaCpp(
# #     model_path="TheBloke/Llama-2-7B-Chat-GGUF/llama-2-7b-chat.Q8_0.gguf",
# #     n_ctx=2048,
# #     f16_kv=True,  # MUST set to True, otherwise you will run into problem after a couple of calls
# #     callback_manager=callback_manager,
# #     verbose=True,
# # )

# llm = AutoModelForCausalLM.from_pretrained("TheBloke/Llama-2-7B-Chat-GGUF", 
#                                            model_file="llama-2-7b-chat.Q8_0.gguf", 
#                                            model_type="llama", 
#                                           #  config = ctransformers.hub.AutoConfig,
#                                            # hf = True
#                                            temperature = 0.2,
#                                            max_new_tokens = 1024,
#                                            stop = ['\n']
#                                            )



# print("LLM loaded........................................")
# print("################################################################")

# def get_chunks(text):
#     text_splitter = RecursiveCharacterTextSplitter(
#         # seperator = "\n",
#         chunk_size = 500,
#         chunk_overlap = 100,
#         length_function = len,
#     )

#     chunks = text_splitter.split_text(text)
#     return chunks


# pdf_path = './100 Weird Facts About the Human Body.pdf'


# reader = PdfReader(pdf_path)
# text = ""
# num_of_pages = len(reader.pages)
# for page in range(num_of_pages):
#     current_page = reader.pages[page]
#     text += current_page.extract_text()


# chunks = get_chunks(text)

# print("Chunks are ready.....................................")
# print("######################################################")

# qdrant = QdrantClient(path = "./db")
# print("db  created................................................")
# print("#####################################################################")

# qdrant.recreate_collection(
#     collection_name="my_facts",
#     vectors_config=models.VectorParams(
#         size=encoder.get_sentence_embedding_dimension(),  # Vector size is defined by used model
#         distance=models.Distance.COSINE,
#     ),
# )

# print("Collection created........................................")
# print("#########################################################")



# li = []
# for i in range(len(chunks)):
#     li.append(i)
 
# dic = zip(li, chunks)
# dic= dict(dic)

# qdrant.upload_records(
#     collection_name="my_facts",
#     records=[
#         models.Record(
#             id=idx,
#             vector=encoder.encode(dic[idx]).tolist(),
#             payload= {dic[idx][:5] : dic[idx]}
#         ) for idx in dic.keys()
#     ],
# )

# print("Records uploaded........................................")
# print("###########################################################")

# def chat(question):
#     # question = input("ask question from pdf.....")


#     hits = qdrant.search(
#         collection_name="my_facts",
#         query_vector=encoder.encode(question).tolist(),
#         limit=3
#     )
#     context = []
#     for hit in hits:
#       context.append(list(hit.payload.values())[0])
    
#     context = context[0] + context[1] + context[2]

#     system_prompt = """You are a helpful assistant, you will use the provided context to answer user questions.
#     Read the given context before answering questions and think step by step. If you can not answer a user question based on 
#     the provided context, inform the user. Do not use any other information for answering user. Provide a detailed answer to the question."""


#     B_INST, E_INST = "[INST]", "[/INST]"

#     B_SYS, E_SYS = "<<SYS>>\n", "\n<</SYS>>\n\n"

#     SYSTEM_PROMPT = B_SYS + system_prompt + E_SYS

#     instruction = f""" 
#     Context: {context}
#     User: {question}"""

#     prompt_template = B_INST + SYSTEM_PROMPT + instruction + E_INST

#     result = llm(prompt_template)
#     return result 

# gr.Interface(
#     fn = chat,
#     inputs = gr.Textbox(lines = 10, placeholder = "Enter your question here πŸ‘‰"),
#     outputs = gr.Textbox(lines = 10, placeholder = "Your answer will be here soon πŸš€"),
#     title="Q&N with PDF πŸ‘©πŸ»β€πŸ’»πŸ““βœπŸ»πŸ’‘",
#     description="This app facilitates a conversation with PDFs available on https://www.delo.si/assets/media/other/20110728/100%20Weird%20Facts%20About%20the%20Human%20Body.pdfπŸ’‘",
#     theme="soft",
#     examples=["Hello", "what is the speed of human nerve impulses?"],
#     # cache_examples=True,
# ).launch() 


import gradio as gr
from threading import Thread
from queue import SimpleQueue
from typing import Any, Dict, List, Union
from langchain.callbacks.base import BaseCallbackHandler
from langchain.schema import LLMResult
from qdrant_client import models, QdrantClient
from sentence_transformers import SentenceTransformer
from PyPDF2 import PdfReader
from langchain.text_splitter import RecursiveCharacterTextSplitter
from qdrant_client.models import PointStruct
import os
from langchain.callbacks.manager import CallbackManager
from langchain.callbacks.streaming_stdout import StreamingStdOutCallbackHandler
# from qdrant_client import QdrantClient
# from langchain import VectorDBQA - This is obsolete
from langchain.chains import RetrievalQA 
from langchain.llms import LlamaCpp
# from PyPDF2 import PdfReader
from langchain.vectorstores import Qdrant
# from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain.embeddings import HuggingFaceBgeEmbeddings
from transformers import AutoModel
from qdrant_client.http import models
# from sentence_transformers import SentenceTransformer
from langchain.prompts import PromptTemplate
from ctransformers import AutoModelForCausalLM

# loading the embedding model - 

encoder = SentenceTransformer("all-MiniLM-L6-v2")

print("embedding model loaded.............................")
print("####################################################")

# loading the LLM 

callback_manager = CallbackManager([StreamingStdOutCallbackHandler()])

print("loading the LLM......................................")

# llm = LlamaCpp(
#     model_path="/home/devangpagare/llm/models/llama-2-7b-chat.Q3_K_S.gguf",
#     # n_gpu_layers=n_gpu_layers,
#     # n_batch=n_batch,
#     n_ctx=2048,
#     f16_kv=True,  # MUST set to True, otherwise you will run into problem after a couple of calls
#     callback_manager=callback_manager,
#     verbose=True,
# )

llm = AutoModelForCausalLM.from_pretrained("TheBloke/Llama-2-7B-Chat-GGUF", 
                                           model_file="llama-2-7b-chat.Q3_K_S.gguf", 
                                           model_type="llama", 
                                          #  config = ctransformers.hub.AutoConfig,
                                           # hf = True
                                           temperature = 0.2,
                                           # max_new_tokens = 1024,
                                           # stop = ['\n']
                                           )


print("LLM loaded........................................")
print("################################################################")

def get_chunks(text):
    text_splitter = RecursiveCharacterTextSplitter(
        # seperator = "\n",
        chunk_size = 500,
        chunk_overlap = 100,
        length_function = len,
    )

    chunks = text_splitter.split_text(text)
    return chunks


pdf_path = './100 Weird Facts About the Human Body.pdf'


reader = PdfReader(pdf_path)
text = ""
num_of_pages = len(reader.pages)
for page in range(num_of_pages):
    current_page = reader.pages[page]
    text += current_page.extract_text()


chunks = get_chunks(text)
print(chunks)
print("Chunks are ready.....................................")
print("######################################################")

qdrant = QdrantClient(path = "./db")
print("db  created................................................")
print("#####################################################################")

qdrant.recreate_collection(
    collection_name="my_facts",
    vectors_config=models.VectorParams(
        size=encoder.get_sentence_embedding_dimension(),  # Vector size is defined by used model
        distance=models.Distance.COSINE,
    ),
)

print("Collection created........................................")
print("#########################################################")


# starting a list of same size as chunks
li = []
for i in range(len(chunks)):
    li.append(i)
# concantinating the li and chunks to create a dcitionary  
dic = zip(li, chunks)
dic= dict(dic)

qdrant.upload_records(
    collection_name="my_facts",
    records=[
        models.Record(
            id=idx,
            vector=encoder.encode(dic[idx]).tolist(),
            payload= {dic[idx][:5] : dic[idx]}
## payload is always suppose to be a dictionary with both keys and values as strings. To do this, I used first 5 chars of
## every value as key to make the payload.
        ) for idx in dic.keys()
    ],
)

print("Records uploaded........................................")
print("###########################################################")

def chat(question):
    # question = input("ask question from pdf.....")


    hits = qdrant.search(
        collection_name="my_facts",
        query_vector=encoder.encode(question).tolist(),
        limit=3
    )
    context = []
    for hit in hits:
    #   print(hit.payload, "score:", hit.score)
      context.append(list(hit.payload.values())[0])
    #   context += str(hit.payload[hit.payload.values()[:5]])
    # print("##################################################################")

    context = context[0] + context[1] + context[2]

    system_prompt = """You are a helpful assistant, you will use the provided context to answer user questions.
    Read the given context before answering questions and think step by step. If you can not answer a user question based on 
    the provided context, inform the user. Do not use any other information for answering user. Provide a detailed answer to the question."""


    B_INST, E_INST = "[INST]", "[/INST]"

    B_SYS, E_SYS = "<<SYS>>\n", "\n<</SYS>>\n\n"

    SYSTEM_PROMPT = B_SYS + system_prompt + E_SYS

    instruction = f""" 
    Context: {context}
    User: {question}"""

    prompt_template = B_INST + SYSTEM_PROMPT + instruction + E_INST

    result = llm(prompt_template)
    return result 

gr.Interface(
    fn = chat,
    inputs = gr.Textbox(lines = 10, placeholder = "Enter your question here πŸ‘‰"),
    outputs = gr.Textbox(lines = 10, placeholder = "Your answer will be here soon πŸš€"),
    title="Q&N with PDF πŸ‘©πŸ»β€πŸ’»πŸ““βœπŸ»πŸ’‘",
    description="This app facilitates a conversation with PDFs available on https://www.delo.si/assets/media/other/20110728/100%20Weird%20Facts%20About%20the%20Human%20Body.pdfπŸ’‘",
    theme="soft",
    examples=["Hello", "what is the speed of human nerve impulses?"],
    # cache_examples=True,
).launch()