Spaces:
Sleeping
Sleeping
File size: 27,948 Bytes
da7c5a8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 |
{
"cells": [
{
"cell_type": "markdown",
"id": "e1bd4b25-0369-48ac-b446-7a7acc0726a3",
"metadata": {},
"source": [
"# Simple Transformer Model for Addition\n",
"This notebook demonstrates how to build and train a simple transformer model to perform addition. We'll start by generating a dataset of simple addition equations and then train a transformer model on this dataset."
]
},
{
"cell_type": "code",
"execution_count": 31,
"id": "f4cadf99",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Defaulting to user installation because normal site-packages is not writeable\n",
"Requirement already satisfied: ipywidgets in /home/silentnova/.local/lib/python3.10/site-packages (8.1.1)\n",
"Requirement already satisfied: comm>=0.1.3 in /home/silentnova/.local/lib/python3.10/site-packages (from ipywidgets) (0.2.1)\n",
"Requirement already satisfied: ipython>=6.1.0 in /home/silentnova/.local/lib/python3.10/site-packages (from ipywidgets) (8.20.0)\n",
"Requirement already satisfied: traitlets>=4.3.1 in /home/silentnova/.local/lib/python3.10/site-packages (from ipywidgets) (5.14.1)\n",
"Requirement already satisfied: widgetsnbextension~=4.0.9 in /home/silentnova/.local/lib/python3.10/site-packages (from ipywidgets) (4.0.9)\n",
"Requirement already satisfied: jupyterlab-widgets~=3.0.9 in /home/silentnova/.local/lib/python3.10/site-packages (from ipywidgets) (3.0.9)\n",
"Requirement already satisfied: decorator in /home/silentnova/.local/lib/python3.10/site-packages (from ipython>=6.1.0->ipywidgets) (5.1.1)\n",
"Requirement already satisfied: jedi>=0.16 in /home/silentnova/.local/lib/python3.10/site-packages (from ipython>=6.1.0->ipywidgets) (0.19.1)\n",
"Requirement already satisfied: matplotlib-inline in /home/silentnova/.local/lib/python3.10/site-packages (from ipython>=6.1.0->ipywidgets) (0.1.6)\n",
"Requirement already satisfied: prompt-toolkit<3.1.0,>=3.0.41 in /home/silentnova/.local/lib/python3.10/site-packages (from ipython>=6.1.0->ipywidgets) (3.0.43)\n",
"Requirement already satisfied: pygments>=2.4.0 in /usr/local/lib/python3.10/dist-packages (from ipython>=6.1.0->ipywidgets) (2.17.2)\n",
"Requirement already satisfied: stack-data in /home/silentnova/.local/lib/python3.10/site-packages (from ipython>=6.1.0->ipywidgets) (0.6.3)\n",
"Requirement already satisfied: exceptiongroup in /home/silentnova/.local/lib/python3.10/site-packages (from ipython>=6.1.0->ipywidgets) (1.2.0)\n",
"Requirement already satisfied: pexpect>4.3 in /usr/lib/python3/dist-packages (from ipython>=6.1.0->ipywidgets) (4.8.0)\n",
"Requirement already satisfied: parso<0.9.0,>=0.8.3 in /home/silentnova/.local/lib/python3.10/site-packages (from jedi>=0.16->ipython>=6.1.0->ipywidgets) (0.8.3)\n",
"Requirement already satisfied: wcwidth in /home/silentnova/.local/lib/python3.10/site-packages (from prompt-toolkit<3.1.0,>=3.0.41->ipython>=6.1.0->ipywidgets) (0.2.13)\n",
"Requirement already satisfied: executing>=1.2.0 in /home/silentnova/.local/lib/python3.10/site-packages (from stack-data->ipython>=6.1.0->ipywidgets) (2.0.1)\n",
"Requirement already satisfied: asttokens>=2.1.0 in /home/silentnova/.local/lib/python3.10/site-packages (from stack-data->ipython>=6.1.0->ipywidgets) (2.4.1)\n",
"Requirement already satisfied: pure-eval in /home/silentnova/.local/lib/python3.10/site-packages (from stack-data->ipython>=6.1.0->ipywidgets) (0.2.2)\n",
"Requirement already satisfied: six>=1.12.0 in /usr/lib/python3/dist-packages (from asttokens>=2.1.0->stack-data->ipython>=6.1.0->ipywidgets) (1.16.0)\n",
"Defaulting to user installation because normal site-packages is not writeable\n",
"Requirement already satisfied: tensorflow in /home/silentnova/.local/lib/python3.10/site-packages (2.15.0.post1)\n",
"Requirement already satisfied: absl-py>=1.0.0 in /home/silentnova/.local/lib/python3.10/site-packages (from tensorflow) (2.1.0)\n",
"Requirement already satisfied: astunparse>=1.6.0 in /home/silentnova/.local/lib/python3.10/site-packages (from tensorflow) (1.6.3)\n",
"Requirement already satisfied: flatbuffers>=23.5.26 in /home/silentnova/.local/lib/python3.10/site-packages (from tensorflow) (23.5.26)\n",
"Requirement already satisfied: gast!=0.5.0,!=0.5.1,!=0.5.2,>=0.2.1 in /home/silentnova/.local/lib/python3.10/site-packages (from tensorflow) (0.5.4)\n",
"Requirement already satisfied: google-pasta>=0.1.1 in /home/silentnova/.local/lib/python3.10/site-packages (from tensorflow) (0.2.0)\n",
"Requirement already satisfied: h5py>=2.9.0 in /home/silentnova/.local/lib/python3.10/site-packages (from tensorflow) (3.10.0)\n",
"Requirement already satisfied: libclang>=13.0.0 in /home/silentnova/.local/lib/python3.10/site-packages (from tensorflow) (16.0.6)\n",
"Requirement already satisfied: ml-dtypes~=0.2.0 in /home/silentnova/.local/lib/python3.10/site-packages (from tensorflow) (0.2.0)\n",
"Requirement already satisfied: numpy<2.0.0,>=1.23.5 in /usr/local/lib/python3.10/dist-packages (from tensorflow) (1.26.3)\n",
"Requirement already satisfied: opt-einsum>=2.3.2 in /home/silentnova/.local/lib/python3.10/site-packages (from tensorflow) (3.3.0)\n",
"Requirement already satisfied: packaging in /usr/local/lib/python3.10/dist-packages (from tensorflow) (23.2)\n",
"Requirement already satisfied: protobuf!=4.21.0,!=4.21.1,!=4.21.2,!=4.21.3,!=4.21.4,!=4.21.5,<5.0.0dev,>=3.20.3 in /home/silentnova/.local/lib/python3.10/site-packages (from tensorflow) (4.23.4)\n",
"Requirement already satisfied: setuptools in /usr/lib/python3/dist-packages (from tensorflow) (59.6.0)\n",
"Requirement already satisfied: six>=1.12.0 in /usr/lib/python3/dist-packages (from tensorflow) (1.16.0)\n",
"Requirement already satisfied: termcolor>=1.1.0 in /home/silentnova/.local/lib/python3.10/site-packages (from tensorflow) (2.4.0)\n",
"Requirement already satisfied: typing-extensions>=3.6.6 in /home/silentnova/.local/lib/python3.10/site-packages (from tensorflow) (4.9.0)\n",
"Requirement already satisfied: wrapt<1.15,>=1.11.0 in /home/silentnova/.local/lib/python3.10/site-packages (from tensorflow) (1.14.1)\n",
"Requirement already satisfied: tensorflow-io-gcs-filesystem>=0.23.1 in /home/silentnova/.local/lib/python3.10/site-packages (from tensorflow) (0.35.0)\n",
"Requirement already satisfied: grpcio<2.0,>=1.24.3 in /home/silentnova/.local/lib/python3.10/site-packages (from tensorflow) (1.60.0)\n",
"Requirement already satisfied: tensorboard<2.16,>=2.15 in /home/silentnova/.local/lib/python3.10/site-packages (from tensorflow) (2.15.1)\n",
"Requirement already satisfied: tensorflow-estimator<2.16,>=2.15.0 in /home/silentnova/.local/lib/python3.10/site-packages (from tensorflow) (2.15.0)\n",
"Requirement already satisfied: keras<2.16,>=2.15.0 in /home/silentnova/.local/lib/python3.10/site-packages (from tensorflow) (2.15.0)\n",
"Requirement already satisfied: wheel<1.0,>=0.23.0 in /usr/lib/python3/dist-packages (from astunparse>=1.6.0->tensorflow) (0.37.1)\n",
"Requirement already satisfied: google-auth<3,>=1.6.3 in /home/silentnova/.local/lib/python3.10/site-packages (from tensorboard<2.16,>=2.15->tensorflow) (2.26.2)\n",
"Requirement already satisfied: google-auth-oauthlib<2,>=0.5 in /home/silentnova/.local/lib/python3.10/site-packages (from tensorboard<2.16,>=2.15->tensorflow) (1.2.0)\n",
"Requirement already satisfied: markdown>=2.6.8 in /home/silentnova/.local/lib/python3.10/site-packages (from tensorboard<2.16,>=2.15->tensorflow) (3.5.2)\n",
"Requirement already satisfied: requests<3,>=2.21.0 in /usr/lib/python3/dist-packages (from tensorboard<2.16,>=2.15->tensorflow) (2.25.1)\n",
"Requirement already satisfied: tensorboard-data-server<0.8.0,>=0.7.0 in /home/silentnova/.local/lib/python3.10/site-packages (from tensorboard<2.16,>=2.15->tensorflow) (0.7.2)\n",
"Requirement already satisfied: werkzeug>=1.0.1 in /home/silentnova/.local/lib/python3.10/site-packages (from tensorboard<2.16,>=2.15->tensorflow) (3.0.1)\n",
"Requirement already satisfied: cachetools<6.0,>=2.0.0 in /home/silentnova/.local/lib/python3.10/site-packages (from google-auth<3,>=1.6.3->tensorboard<2.16,>=2.15->tensorflow) (5.3.2)\n",
"Requirement already satisfied: pyasn1-modules>=0.2.1 in /home/silentnova/.local/lib/python3.10/site-packages (from google-auth<3,>=1.6.3->tensorboard<2.16,>=2.15->tensorflow) (0.3.0)\n",
"Requirement already satisfied: rsa<5,>=3.1.4 in /home/silentnova/.local/lib/python3.10/site-packages (from google-auth<3,>=1.6.3->tensorboard<2.16,>=2.15->tensorflow) (4.9)\n",
"Requirement already satisfied: requests-oauthlib>=0.7.0 in /home/silentnova/.local/lib/python3.10/site-packages (from google-auth-oauthlib<2,>=0.5->tensorboard<2.16,>=2.15->tensorflow) (1.3.1)\n",
"Requirement already satisfied: MarkupSafe>=2.1.1 in /home/silentnova/.local/lib/python3.10/site-packages (from werkzeug>=1.0.1->tensorboard<2.16,>=2.15->tensorflow) (2.1.4)\n",
"Requirement already satisfied: pyasn1<0.6.0,>=0.4.6 in /home/silentnova/.local/lib/python3.10/site-packages (from pyasn1-modules>=0.2.1->google-auth<3,>=1.6.3->tensorboard<2.16,>=2.15->tensorflow) (0.5.1)\n",
"Requirement already satisfied: oauthlib>=3.0.0 in /usr/lib/python3/dist-packages (from requests-oauthlib>=0.7.0->google-auth-oauthlib<2,>=0.5->tensorboard<2.16,>=2.15->tensorflow) (3.2.0)\n",
"Defaulting to user installation because normal site-packages is not writeable\n",
"Requirement already satisfied: numpy in /usr/local/lib/python3.10/dist-packages (1.26.3)\n"
]
}
],
"source": [
"!pip install ipywidgets\n",
"!pip install tensorflow\n",
"!pip install numpy"
]
},
{
"cell_type": "markdown",
"id": "e799a955-9d61-4809-9fd8-2aec69650d13",
"metadata": {},
"source": [
"## Dataset Generation\n",
"We will generate a dataset of simple addition equations. Each equation will be in the form of 'a + b = c' where 'a', 'b', and 'c' are integers."
]
},
{
"cell_type": "code",
"execution_count": 32,
"id": "9374dfb6-f072-44a2-a9d9-233efe87ac7f",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Input Equation: 12 + 14 =\n",
"Answer: 26;\n",
"\n",
"Input Equation: 28 + 73 =\n",
"Answer: 101;\n",
"\n",
"Input Equation: 51 + 31 =\n",
"Answer: 82;\n",
"\n"
]
}
],
"source": [
"import random\n",
"from tensorflow.keras.preprocessing.text import Tokenizer\n",
"from tensorflow.keras.preprocessing.sequence import pad_sequences\n",
"\n",
"def generate_addition_data(num_samples, stop_token=';'):\n",
" input_equations = []\n",
" answers = []\n",
" for _ in range(num_samples):\n",
" a = random.randint(0, 99)\n",
" b = random.randint(0, 99)\n",
" input_eq = f\"{a} + {b} =\"\n",
" answer = str(a + b) + stop_token # Append the stop token to each answer\n",
" input_equations.append(input_eq)\n",
" answers.append(answer)\n",
" return input_equations, answers\n",
"\n",
"num_samples = 500000\n",
"input_equations, answers = generate_addition_data(num_samples)\n",
"\n",
"\n",
"num_samples_to_print = 3\n",
"for i in range(num_samples_to_print):\n",
" print(f\"Input Equation: {input_equations[i]}\")\n",
" print(f\"Answer: {answers[i]}\")\n",
" print()"
]
},
{
"cell_type": "markdown",
"id": "95d98ddf-ca76-4139-ab88-af21659f8f7a",
"metadata": {},
"source": [
"## Data Preprocessing\n",
"We'll convert the equations into a format suitable for training a transformer model. This includes tokenization and converting tokens to numerical format.\n"
]
},
{
"cell_type": "code",
"execution_count": 33,
"id": "477da248-a90c-4a1d-b307-8a786aab9750",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Input Equation: 12 + 14 =\n",
"Tokenized Input Sequence: [2, 9, 1, 3, 1, 2, 12, 1, 4]\n",
"Padded Input Sequence: [ 2 9 1 3 1 2 12 1 4]\n",
"Answer: 26;\n",
"Tokenized Answer Sequence: [9, 10, 5]\n",
"Padded Answer Sequence: [ 9 10 5 0 0 0 0 0 0]\n",
"\n",
"Input Equation: 28 + 73 =\n",
"Tokenized Input Sequence: [9, 8, 1, 3, 1, 7, 6, 1, 4]\n",
"Padded Input Sequence: [9 8 1 3 1 7 6 1 4]\n",
"Answer: 101;\n",
"Tokenized Answer Sequence: [2, 14, 2, 5]\n",
"Padded Answer Sequence: [ 2 14 2 5 0 0 0 0 0]\n",
"\n",
"Input Equation: 51 + 31 =\n",
"Tokenized Input Sequence: [11, 2, 1, 3, 1, 6, 2, 1, 4]\n",
"Padded Input Sequence: [11 2 1 3 1 6 2 1 4]\n",
"Answer: 82;\n",
"Tokenized Answer Sequence: [8, 9, 5]\n",
"Padded Answer Sequence: [8 9 5 0 0 0 0 0 0]\n",
"\n"
]
}
],
"source": [
"# Tokenization\n",
"tokenizer = Tokenizer(char_level=True) # Adjust tokenizer settings as needed\n",
"tokenizer.fit_on_texts(input_equations + answers)\n",
"\n",
"# Convert to sequences\n",
"input_sequences = tokenizer.texts_to_sequences(input_equations)\n",
"answer_sequences = tokenizer.texts_to_sequences(answers)\n",
"\n",
"# Padding sequences\n",
"max_len_input = max([len(seq) for seq in input_sequences])\n",
"max_len_answer = max([len(seq) for seq in answer_sequences])\n",
"max_len = max(max_len_input, max_len_answer)\n",
"\n",
"input_sequences_padded = pad_sequences(input_sequences, maxlen=max_len, padding='post')\n",
"answer_sequences_padded = pad_sequences(answer_sequences, maxlen=max_len, padding='post')\n",
"\n",
"\n",
"\n",
"\n",
"for i in range(num_samples_to_print):\n",
" print(f\"Input Equation: {input_equations[i]}\")\n",
" print(f\"Tokenized Input Sequence: {input_sequences[i]}\")\n",
" print(f\"Padded Input Sequence: {input_sequences_padded[i]}\")\n",
" \n",
" print(f\"Answer: {answers[i]}\")\n",
" print(f\"Tokenized Answer Sequence: {answer_sequences[i]}\")\n",
" print(f\"Padded Answer Sequence: {answer_sequences_padded[i]}\")\n",
" \n",
" print()"
]
},
{
"cell_type": "markdown",
"id": "aa090f72",
"metadata": {},
"source": [
"The tokenized input sequences you see are token IDs generated by Keras' Tokenizer. Let me explain how this works:\n",
"\n",
" - Tokenizer Creation: When we create a Tokenizer instance with char_level=True, the tokenizer treats each unique character as a distinct token.\n",
"\n",
" - Fitting the Tokenizer: By calling tokenizer.fit_on_texts(input_equations + answers), we are essentially instructing the tokenizer to go through all the characters in our dataset (both the input equations and the answers) and assign a unique integer ID to each different character.\n",
"\n",
" - Token IDs: The tokenizer then creates a mapping from characters to these integer IDs. For example, it might assign '1' to '+', '2' to '=', '3' to '0', '4' to ';', and so on for all unique characters (including all digits from '0' to '9'). The exact mapping depends on the order in which the characters are encountered and their frequency.\n",
"\n",
" - Tokenization Process: When we convert the text data into sequences using tokenizer.texts_to_sequences(...), each character in the input is replaced by its corresponding integer ID based on the mapping created by the tokenizer.\n",
"\n",
"For instance, if the input equation is \"49 + 51 =\", and the tokenizer has assigned '6' to '4', '13' to '9', '1' to ' ', '3' to '+', '12' to '5', and '2' to '=', then the tokenized input sequence for this equation would be [6, 13, 1, 3, 1, 12, 2, 1, 4].\n",
"\n",
"These token IDs are used throughout the model for processing, and they are crucial for both understanding the input data and generating predictions. The model learns to associate these tokens with their meaning in the context of addition operations."
]
},
{
"cell_type": "markdown",
"id": "6d89bad6-39a0-49ec-8754-931269ea4701",
"metadata": {},
"source": [
"## Building the Transformer Model\n",
"We will define a simple transformer model suitable for our task."
]
},
{
"cell_type": "code",
"execution_count": 34,
"id": "00811e2d-2d60-49be-8c38-e88bf6ecbdfd",
"metadata": {},
"outputs": [],
"source": [
"from tensorflow.keras.models import Model\n",
"from tensorflow.keras.layers import Input, Embedding, MultiHeadAttention, LayerNormalization, Dropout, Dense\n",
"from tensorflow.keras.layers import GlobalAveragePooling1D\n",
"from tensorflow.keras.layers import Masking\n",
"import tensorflow as tf\n",
"\n",
"# Transformer block as a custom layer\n",
"class TransformerBlock(tf.keras.layers.Layer):\n",
" def __init__(self, embed_dim, num_heads, ff_dim, rate=0.1):\n",
" super(TransformerBlock, self).__init__()\n",
" self.att = MultiHeadAttention(num_heads=num_heads, key_dim=embed_dim)\n",
" self.ffn = tf.keras.Sequential(\n",
" [Dense(ff_dim, activation=\"relu\"), Dense(embed_dim),]\n",
" )\n",
" self.layernorm1 = LayerNormalization(epsilon=1e-6)\n",
" self.layernorm2 = LayerNormalization(epsilon=1e-6)\n",
" self.dropout1 = Dropout(rate)\n",
" self.dropout2 = Dropout(rate)\n",
"\n",
" def call(self, inputs, training):\n",
" attn_output = self.att(inputs, inputs)\n",
" attn_output = self.dropout1(attn_output, training=training)\n",
" out1 = self.layernorm1(inputs + attn_output)\n",
" ffn_output = self.ffn(out1)\n",
" ffn_output = self.dropout2(ffn_output, training=training)\n",
" return self.layernorm2(out1 + ffn_output)\n"
]
},
{
"cell_type": "code",
"execution_count": 35,
"id": "4c69b1b4-070c-4cdc-8f33-ceb7f8fcaa63",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Model: \"model_3\"\n",
"_________________________________________________________________\n",
" Layer (type) Output Shape Param # \n",
"=================================================================\n",
" input_4 (InputLayer) [(None, 9)] 0 \n",
" \n",
" embedding_3 (Embedding) (None, 9, 64) 960 \n",
" \n",
" masking (Masking) (None, 9, 64) 0 \n",
" \n",
" transformer_block_3 (Trans (None, 9, 64) 446336 \n",
" formerBlock) \n",
" \n",
" global_average_pooling1d_3 (None, 64) 0 \n",
" (GlobalAveragePooling1D) \n",
" \n",
" dense_11 (Dense) (None, 15) 975 \n",
" \n",
"=================================================================\n",
"Total params: 448271 (1.71 MB)\n",
"Trainable params: 448271 (1.71 MB)\n",
"Non-trainable params: 0 (0.00 Byte)\n",
"_________________________________________________________________\n"
]
}
],
"source": [
"vocab_size = len(tokenizer.word_index) + 1\n",
"embedding_dim = 64\n",
"num_heads = 2\n",
"ff_dim = 3200\n",
"\n",
"\n",
"inputs = Input(shape=(max_len,))\n",
"x = Embedding(vocab_size, embedding_dim)(inputs)\n",
"x = Masking(mask_value=0)(x) # Add Masking layer after Embedding\n",
"x = TransformerBlock(embedding_dim, num_heads, ff_dim)(x)\n",
"x = GlobalAveragePooling1D()(x)\n",
"outputs = Dense(vocab_size, activation='softmax')(x)\n",
"\n",
"model = Model(inputs=inputs, outputs=outputs)\n",
"model.compile(optimizer='adam', loss='sparse_categorical_crossentropy', metrics=['accuracy'])\n",
"model.summary()"
]
},
{
"cell_type": "markdown",
"id": "8f08462c-97c9-4588-80d1-80f818fe0269",
"metadata": {},
"source": [
"## Model Training\n",
"We will now train the transformer model on our generated dataset.\n"
]
},
{
"cell_type": "code",
"execution_count": 36,
"id": "913ac294-5117-4b7f-842d-7af2c1a437f7",
"metadata": {
"scrolled": true
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"train_input shape: (400000, 9)\n",
"val_input shape: (100000, 9)\n",
"train_answers_one_hot shape: (400000, 15)\n",
"val_answers_one_hot shape: (100000, 15)\n",
"Epoch 1/10\n",
"12500/12500 [==============================] - 102s 8ms/step - loss: 0.9361 - accuracy: 0.6122 - val_loss: 0.8255 - val_accuracy: 0.6275\n",
"Epoch 2/10\n",
"12500/12500 [==============================] - 104s 8ms/step - loss: 0.8035 - accuracy: 0.6288 - val_loss: 0.7792 - val_accuracy: 0.6329\n",
"Epoch 3/10\n",
"12500/12500 [==============================] - 104s 8ms/step - loss: 0.7768 - accuracy: 0.6330 - val_loss: 0.7589 - val_accuracy: 0.6299\n",
"Epoch 4/10\n",
"12500/12500 [==============================] - 104s 8ms/step - loss: 0.7650 - accuracy: 0.6339 - val_loss: 0.7563 - val_accuracy: 0.6328\n",
"Epoch 5/10\n",
"12500/12500 [==============================] - 96s 8ms/step - loss: 0.7587 - accuracy: 0.6343 - val_loss: 0.7631 - val_accuracy: 0.6364\n",
"Epoch 6/10\n",
"12500/12500 [==============================] - 15804s 1s/step - loss: 0.7546 - accuracy: 0.6360 - val_loss: 0.7520 - val_accuracy: 0.6338\n",
"Epoch 7/10\n",
"12500/12500 [==============================] - 117s 9ms/step - loss: 0.7523 - accuracy: 0.6359 - val_loss: 0.7477 - val_accuracy: 0.6353\n",
"Epoch 8/10\n",
"12500/12500 [==============================] - 118s 9ms/step - loss: 0.7500 - accuracy: 0.6359 - val_loss: 0.7687 - val_accuracy: 0.6251\n",
"Epoch 9/10\n",
"12500/12500 [==============================] - 109s 9ms/step - loss: 0.7487 - accuracy: 0.6364 - val_loss: 0.7486 - val_accuracy: 0.6348\n",
"Epoch 10/10\n",
"12500/12500 [==============================] - 89s 7ms/step - loss: 0.7477 - accuracy: 0.6360 - val_loss: 0.7479 - val_accuracy: 0.6314\n"
]
}
],
"source": [
"# Splitting dataset into training and validation\n",
"train_size = int(0.8 * len(input_sequences_padded))\n",
"train_input = input_sequences_padded[:train_size]\n",
"train_answers = answer_sequences_padded[:train_size]\n",
"\n",
"\n",
"val_input = input_sequences_padded[train_size:]\n",
"val_answers = answer_sequences_padded[train_size:]\n",
"\n",
"\n",
"import numpy as np\n",
"from tensorflow.keras.utils import to_categorical\n",
"\n",
"# Assuming each entry in your target data is an integer class label\n",
"num_classes = 15 # as per your model's output\n",
"\n",
"\n",
"\n",
"# Flatten the target data\n",
"train_answers_flattened = train_answers[:, 0] # Assuming the class label is in the first column\n",
"val_answers_flattened = val_answers[:, 0]\n",
"\n",
"# Apply one-hot encoding\n",
"train_answers_one_hot = to_categorical(train_answers_flattened, num_classes=num_classes)\n",
"val_answers_one_hot = to_categorical(val_answers_flattened, num_classes=num_classes)\n",
"\n",
"\n",
"\n",
"print(\"train_input shape:\", train_input.shape)\n",
"print(\"val_input shape:\", val_input.shape)\n",
"print(\"train_answers_one_hot shape:\", train_answers_one_hot.shape)\n",
"print(\"val_answers_one_hot shape:\", val_answers_one_hot.shape)\n",
"\n",
"\n",
"\n",
"\n",
"# Training\n",
"epochs = 10 # Adjust as needed\n",
"model.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['accuracy'])\n",
"\n",
"# Then continue with training\n",
"history = model.fit(train_input, train_answers_one_hot, validation_data=(val_input, val_answers_one_hot), epochs=epochs, batch_size=32)\n"
]
},
{
"cell_type": "markdown",
"id": "cc146793-29e8-4bda-9423-197d05cc12f7",
"metadata": {},
"source": [
"## Prediction"
]
},
{
"cell_type": "code",
"execution_count": 37,
"id": "353ef3f0-3e85-4934-99ab-4a108f3e3cc5",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"1/1 [==============================] - 0s 87ms/step\n",
"1/1 [==============================] - 0s 12ms/step\n",
"1/1 [==============================] - 0s 12ms/step\n",
"1/1 [==============================] - 0s 11ms/step\n",
"1/1 [==============================] - 0s 12ms/step\n",
"1/1 [==============================] - 0s 12ms/step\n",
"1/1 [==============================] - 0s 11ms/step\n",
"1/1 [==============================] - 0s 11ms/step\n",
"1/1 [==============================] - 0s 11ms/step\n",
"1/1 [==============================] - 0s 11ms/step\n",
"Predicted result: 9114461135\n"
]
}
],
"source": [
"def predict_until_stop(model, tokenizer, input_text, max_length=10, stop_token=';'):\n",
" # Tokenizing the input\n",
" input_seq = tokenizer.texts_to_sequences([input_text])\n",
" # Padding the sequence\n",
" input_padded = pad_sequences(input_seq, maxlen=max_len, padding='post')\n",
"\n",
" predicted_sequence = []\n",
" for _ in range(max_length):\n",
" # Make a prediction\n",
" prediction = model.predict(input_padded)\n",
" predicted_token_index = np.argmax(prediction, axis=1)[0]\n",
" predicted_token = tokenizer.index_word[predicted_token_index]\n",
"\n",
" # Append to the sequence and break if stop token is predicted\n",
" if predicted_token == stop_token:\n",
" break\n",
" predicted_sequence.append(predicted_token)\n",
"\n",
" # Update the input by shifting left and adding the new token at the end\n",
" input_padded = np.roll(input_padded, -1, axis=1)\n",
" input_padded[0, -1] = predicted_token_index\n",
"\n",
" return ''.join(predicted_sequence)\n",
"\n",
"# Example usage\n",
"new_input = \"73 + 22 =\"\n",
"predicted_result = predict_until_stop(model, tokenizer, new_input, max_length=10)\n",
"print(\"Predicted result:\", predicted_result)"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.10.12"
}
},
"nbformat": 4,
"nbformat_minor": 5
}
|