import streamlit as st import cv2 import numpy as np import time # Larger title st.markdown("

Emotion Detection

", unsafe_allow_html=True) # Smaller subtitle st.markdown("

angry, fear, happy, neutral, sad, surprise

", unsafe_allow_html=True) start = time.time() from keras.models import load_model import tempfile from PIL import Image @st.cache_resource def load_emotion_model(): model = load_model('CNN_Model_acc_75.h5') return model # Load the model model = load_emotion_model() print("time taken to load model : " , time.time() - start) img_shape = 48 emotion_labels = ['angry', 'fear', 'happy', 'neutral', 'sad', 'surprise'] face_cascade = cv2.CascadeClassifier(cv2.data.haarcascades + 'haarcascade_frontalface_default.xml') def process_frame(frame): gray_frame = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY) faces = face_cascade.detectMultiScale(gray_frame, scaleFactor=1.1, minNeighbors=5, minSize=(30, 30)) for (x, y, w, h) in faces: roi_gray = gray_frame[y:y+h, x:x+w] roi_color = frame[y:y+h, x:x+w] face_roi = cv2.resize(roi_color, (img_shape, img_shape)) face_roi = np.expand_dims(face_roi, axis=0) face_roi = face_roi / float(img_shape) predictions = model.predict(face_roi) emotion = emotion_labels[np.argmax(predictions[0])] cv2.rectangle(frame, (x, y), (x + w, y + h), (0, 255, 0), 2) cv2.putText(frame, emotion, (x, y+h), cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 255, 0), 2) return frame # def video_feed(video_source): # # Read and process video frames # while True: # ret, frame = video_source.read() # if not ret: # break # frame = process_frame(frame) # st.image(frame, channels="BGR") def video_feed(video_source): # Create a placeholder to display the frames frame_placeholder = st.empty() # This placeholder will be used to replace frames in-place while True: ret, frame = video_source.read() if not ret: break frame = process_frame(frame) # Display the frame in the placeholder frame_placeholder.image(frame, channels="BGR", use_column_width=True) # Sidebar for video or image upload upload_choice = st.sidebar.radio("Choose input source", [ "Upload Video", "Upload Image" ,"Camera"]) if upload_choice == "Camera": # Access camera video_source = cv2.VideoCapture(0) video_feed(video_source) elif upload_choice == "Upload Video": uploaded_video = st.file_uploader("Upload Video", type=["mp4", "mov", "avi", "mkv", "webm"]) if uploaded_video: # Temporarily save the video to disk with tempfile.NamedTemporaryFile(delete=False) as tfile: tfile.write(uploaded_video.read()) video_source = cv2.VideoCapture(tfile.name) video_feed(video_source) elif upload_choice == "Upload Image": uploaded_image = st.file_uploader("Upload Image", type=["png", "jpg", "jpeg", "gif"]) if uploaded_image: image = Image.open(uploaded_image) frame = np.array(image) frame = process_frame(frame) st.image(frame, caption='Processed Image', use_column_width=True) st.sidebar.write("Emotion Labels: Angry, Fear, Happy, Neutral, Sad, Surprise")