helvekami commited on
Commit
60892b5
·
1 Parent(s): 406d6a6

Upload 3 files

Browse files
Files changed (3) hide show
  1. app.ipynb +0 -0
  2. app.py +6 -6
  3. requirements.txt +0 -1
app.ipynb CHANGED
The diff for this file is too large to render. See raw diff
 
app.py CHANGED
@@ -3,16 +3,16 @@
3
  # %% auto 0
4
  __all__ = ['learn', 'categories', 'aud', 'examples', 'intf', 'log_mel_spec_tfm', 'classify_aud']
5
 
 
6
  from fastai.vision.all import *
7
- import librosa.display
8
  import matplotlib.pyplot as plt
 
9
  import numpy as np
10
  import pandas as pd
11
  import librosa
12
- from scipy.io import wavfile
13
  import gradio as gr
14
 
15
- # %% app.ipynb 1
16
  def log_mel_spec_tfm(fname):
17
  y, sr = librosa.load(fname, mono=True)
18
  D = librosa.amplitude_to_db(np.abs(librosa.stft(y)), ref=np.max)
@@ -22,11 +22,11 @@ def log_mel_spec_tfm(fname):
22
  plt.close()
23
  return img
24
 
25
- # %% app.ipynb 2
26
  learn = load_learner('model.pkl')
27
  learn.remove_cb(ProgressCallback)
28
 
29
- # %% app.ipynb 5
30
  categories = ('Brass', 'Flute', 'Guitar', 'Keyboard', 'Mallet', 'Reed', 'String', 'Vocal')
31
 
32
  def classify_aud(aud):
@@ -35,7 +35,7 @@ def classify_aud(aud):
35
  pred, idx, probs = learn.predict(img_fname)
36
  return dict(zip(categories, map(float, probs)))
37
 
38
- # %% app.ipynb 6
39
  aud = gr.Audio(source="upload", type="numpy")
40
  examples = [f.name for f in Path('.').iterdir() if '.wav' in f.name]
41
 
 
3
  # %% auto 0
4
  __all__ = ['learn', 'categories', 'aud', 'examples', 'intf', 'log_mel_spec_tfm', 'classify_aud']
5
 
6
+ # %% app.ipynb 1
7
  from fastai.vision.all import *
 
8
  import matplotlib.pyplot as plt
9
+ import librosa.display
10
  import numpy as np
11
  import pandas as pd
12
  import librosa
 
13
  import gradio as gr
14
 
15
+ # %% app.ipynb 2
16
  def log_mel_spec_tfm(fname):
17
  y, sr = librosa.load(fname, mono=True)
18
  D = librosa.amplitude_to_db(np.abs(librosa.stft(y)), ref=np.max)
 
22
  plt.close()
23
  return img
24
 
25
+ # %% app.ipynb 3
26
  learn = load_learner('model.pkl')
27
  learn.remove_cb(ProgressCallback)
28
 
29
+ # %% app.ipynb 6
30
  categories = ('Brass', 'Flute', 'Guitar', 'Keyboard', 'Mallet', 'Reed', 'String', 'Vocal')
31
 
32
  def classify_aud(aud):
 
35
  pred, idx, probs = learn.predict(img_fname)
36
  return dict(zip(categories, map(float, probs)))
37
 
38
+ # %% app.ipynb 7
39
  aud = gr.Audio(source="upload", type="numpy")
40
  examples = [f.name for f in Path('.').iterdir() if '.wav' in f.name]
41
 
requirements.txt CHANGED
@@ -2,7 +2,6 @@ fastai
2
  librosa
3
  matplotlib
4
  numpy
5
- functools
6
  pandas
7
  librosa
8
  scipy
 
2
  librosa
3
  matplotlib
4
  numpy
 
5
  pandas
6
  librosa
7
  scipy