Spaces:
Runtime error
Runtime error
# AUTOGENERATED! DO NOT EDIT! File to edit: app.ipynb. | |
# %% auto 0 | |
__all__ = ['learn', 'categories', 'aud', 'examples', 'intf', 'log_mel_spec_tfm', 'classify_aud'] | |
# %% app.ipynb 1 | |
def log_mel_spec_tfm(fname, src_path, dst_path): | |
os.makedirs(str(dst_path), exist_ok = True) | |
y, sr = librosa.load(str(src_path/fname), mono=True) | |
D = librosa.amplitude_to_db(np.abs(librosa.stft(y)), ref=np.max) | |
img = librosa.display.specshow(D, y_axis='linear', x_axis='time', | |
sr=sr) | |
plt.savefig(str(dst_path/fname[:-4]) + '.png') | |
plt.close() | |
return img | |
# %% app.ipynb 2 | |
learn = load_learner('model.pkl') | |
learn.remove_cb(ProgressCallback) | |
# %% app.ipynb 6 | |
categories = ('Brass', 'Flute', 'Guitar', 'Keyboard', 'Mallet', 'Reed', 'String', 'Vocal') | |
def classify_aud(aud): | |
log_mel_spec_tfm(aud, Path('.'), Path('.')) | |
img_fname = str(aud[:-4]) + '.png' | |
pred, idx, probs = learn.predict(img_fname) | |
return dict(zip(categories, map(float, probs))) | |
# %% app.ipynb 8 | |
aud = gr.Audio(source="upload", type="numpy") | |
examples = ['test/' + str(f.name) for f in Path('test').iterdir()] | |
intf = gr.Interface(fn = classify_aud, inputs = aud, outputs = "label", examples = examples) | |
intf.launch(inline = False) | |