Spaces:
				
			
			
	
			
			
		Runtime error
		
	
	
	
			
			
	
	
	
	
		
		
		Runtime error
		
	File size: 11,329 Bytes
			
			| 96ea114 3e3db38 0422656 96ea114 3ace12e 96ea114 27b5d35 96ea114 0927022 1a37ac3 3ace12e 96ea114 885d63c 96ea114 885d63c 96ea114 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 | import gc
import hashlib
import os
import queue
import threading
import warnings
import librosa
import numpy as np
import onnxruntime as ort
import soundfile as sf
import torch
from tqdm import tqdm
warnings.filterwarnings("ignore")
stem_naming = {'Vocals': 'Instrumental', 'Other': 'Instruments', 'Instrumental': 'Vocals', 'Drums': 'Drumless', 'Bass': 'Bassless'}
class MDXModel:
    def __init__(self, device, dim_f, dim_t, n_fft, hop=1024, stem_name=None, compensation=1.000):
        self.dim_f = dim_f
        self.dim_t = dim_t
        self.dim_c = 4
        self.n_fft = n_fft
        self.hop = hop
        self.stem_name = stem_name
        self.compensation = compensation
        self.n_bins = self.n_fft // 2 + 1
        self.chunk_size = hop * (self.dim_t - 1)
        self.window = torch.hann_window(window_length=self.n_fft, periodic=True).to(device)
        out_c = self.dim_c
        self.freq_pad = torch.zeros([1, out_c, self.n_bins - self.dim_f, self.dim_t]).to(device)
    def stft(self, x):
        x = x.reshape([-1, self.chunk_size])
        x = torch.stft(x, n_fft=self.n_fft, hop_length=self.hop, window=self.window, center=True, return_complex=True)
        x = torch.view_as_real(x)
        x = x.permute([0, 3, 1, 2])
        x = x.reshape([-1, 2, 2, self.n_bins, self.dim_t]).reshape([-1, 4, self.n_bins, self.dim_t])
        return x[:, :, :self.dim_f]
    def istft(self, x, freq_pad=None):
        freq_pad = self.freq_pad.repeat([x.shape[0], 1, 1, 1]) if freq_pad is None else freq_pad
        x = torch.cat([x, freq_pad], -2)
        # c = 4*2 if self.target_name=='*' else 2
        x = x.reshape([-1, 2, 2, self.n_bins, self.dim_t]).reshape([-1, 2, self.n_bins, self.dim_t])
        x = x.permute([0, 2, 3, 1])
        x = x.contiguous()
        x = torch.view_as_complex(x)
        x = torch.istft(x, n_fft=self.n_fft, hop_length=self.hop, window=self.window, center=True)
        return x.reshape([-1, 2, self.chunk_size])
class MDX:
    DEFAULT_SR = 44100
    # Unit: seconds
    DEFAULT_CHUNK_SIZE = 0 * DEFAULT_SR
    DEFAULT_MARGIN_SIZE = 1 * DEFAULT_SR
    DEFAULT_PROCESSOR = 0
    def __init__(self, model_path: str, params: MDXModel, processor=DEFAULT_PROCESSOR):
        # Set the device and the provider (CPU or CUDA)
        #self.device = torch.device(f'cuda:{processor}') if processor >= 0 else torch.device('cpu')
        self.device = torch.device('cuda:0') if torch.cuda.is_available() else torch.device('cpu')
        #self.provider = ['CUDAExecutionProvider'] if processor >= 0 else ['CPUExecutionProvider']
        self.provider = ['CPUExecutionProvider']
        
        self.model = params
        # Load the ONNX model using ONNX Runtime
        self.ort = ort.InferenceSession(model_path, providers=self.provider)
        # Preload the model for faster performance
        self.ort.run(None, {'input': torch.rand(1, 4, params.dim_f, params.dim_t).numpy()})
        self.process = lambda spec: self.ort.run(None, {'input': spec.cpu().numpy()})[0]
        self.prog = None
    @staticmethod
    def get_hash(model_path):
        try:
            with open(model_path, 'rb') as f:
                f.seek(- 10000 * 1024, 2)
                model_hash = hashlib.md5(f.read()).hexdigest()
        except:
            model_hash = hashlib.md5(open(model_path, 'rb').read()).hexdigest()
        return model_hash
    @staticmethod
    def segment(wave, combine=True, chunk_size=DEFAULT_CHUNK_SIZE, margin_size=DEFAULT_MARGIN_SIZE):
        """
        Segment or join segmented wave array
        Args:
            wave: (np.array) Wave array to be segmented or joined
            combine: (bool) If True, combines segmented wave array. If False, segments wave array.
            chunk_size: (int) Size of each segment (in samples)
            margin_size: (int) Size of margin between segments (in samples)
        Returns:
            numpy array: Segmented or joined wave array
        """
        if combine:
            processed_wave = None  # Initializing as None instead of [] for later numpy array concatenation
            for segment_count, segment in enumerate(wave):
                start = 0 if segment_count == 0 else margin_size
                end = None if segment_count == len(wave) - 1 else -margin_size
                if margin_size == 0:
                    end = None
                if processed_wave is None:  # Create array for first segment
                    processed_wave = segment[:, start:end]
                else:  # Concatenate to existing array for subsequent segments
                    processed_wave = np.concatenate((processed_wave, segment[:, start:end]), axis=-1)
        else:
            processed_wave = []
            sample_count = wave.shape[-1]
            if chunk_size <= 0 or chunk_size > sample_count:
                chunk_size = sample_count
            if margin_size > chunk_size:
                margin_size = chunk_size
            for segment_count, skip in enumerate(range(0, sample_count, chunk_size)):
                margin = 0 if segment_count == 0 else margin_size
                end = min(skip + chunk_size + margin_size, sample_count)
                start = skip - margin
                cut = wave[:, start:end].copy()
                processed_wave.append(cut)
                if end == sample_count:
                    break
        return processed_wave
    def pad_wave(self, wave):
        """
        Pad the wave array to match the required chunk size
        Args:
            wave: (np.array) Wave array to be padded
        Returns:
            tuple: (padded_wave, pad, trim)
                - padded_wave: Padded wave array
                - pad: Number of samples that were padded
                - trim: Number of samples that were trimmed
        """
        n_sample = wave.shape[1]
        trim = self.model.n_fft // 2
        gen_size = self.model.chunk_size - 2 * trim
        pad = gen_size - n_sample % gen_size
        # Padded wave
        wave_p = np.concatenate((np.zeros((2, trim)), wave, np.zeros((2, pad)), np.zeros((2, trim))), 1)
        mix_waves = []
        for i in range(0, n_sample + pad, gen_size):
            waves = np.array(wave_p[:, i:i + self.model.chunk_size])
            mix_waves.append(waves)
        print(self.device)
        mix_waves = torch.tensor(mix_waves, dtype=torch.float32).to(self.device)
        return mix_waves, pad, trim
    def _process_wave(self, mix_waves, trim, pad, q: queue.Queue, _id: int):
        """
        Process each wave segment in a multi-threaded environment
        Args:
            mix_waves: (torch.Tensor) Wave segments to be processed
            trim: (int) Number of samples trimmed during padding
            pad: (int) Number of samples padded during padding
            q: (queue.Queue) Queue to hold the processed wave segments
            _id: (int) Identifier of the processed wave segment
        Returns:
            numpy array: Processed wave segment
        """
        mix_waves = mix_waves.split(1)
        with torch.no_grad():
            pw = []
            for mix_wave in mix_waves:
                self.prog.update()
                spec = self.model.stft(mix_wave)
                processed_spec = torch.tensor(self.process(spec))
                processed_wav = self.model.istft(processed_spec.to(self.device))
                processed_wav = processed_wav[:, :, trim:-trim].transpose(0, 1).reshape(2, -1).cpu().numpy()
                pw.append(processed_wav)
        processed_signal = np.concatenate(pw, axis=-1)[:, :-pad]
        q.put({_id: processed_signal})
        return processed_signal
    def process_wave(self, wave: np.array, mt_threads=1):
        """
        Process the wave array in a multi-threaded environment
        Args:
            wave: (np.array) Wave array to be processed
            mt_threads: (int) Number of threads to be used for processing
        Returns:
            numpy array: Processed wave array
        """
        self.prog = tqdm(total=0)
        chunk = wave.shape[-1] // mt_threads
        waves = self.segment(wave, False, chunk)
        # Create a queue to hold the processed wave segments
        q = queue.Queue()
        threads = []
        for c, batch in enumerate(waves):
            mix_waves, pad, trim = self.pad_wave(batch)
            self.prog.total = len(mix_waves) * mt_threads
            thread = threading.Thread(target=self._process_wave, args=(mix_waves, trim, pad, q, c))
            thread.start()
            threads.append(thread)
        for thread in threads:
            thread.join()
        self.prog.close()
        processed_batches = []
        while not q.empty():
            processed_batches.append(q.get())
        processed_batches = [list(wave.values())[0] for wave in
                             sorted(processed_batches, key=lambda d: list(d.keys())[0])]
        assert len(processed_batches) == len(waves), 'Incomplete processed batches, please reduce batch size!'
        return self.segment(processed_batches, True, chunk)
def run_mdx(model_params, output_dir, model_path, filename, exclude_main=False, exclude_inversion=False, suffix=None, invert_suffix=None, denoise=False, keep_orig=True, m_threads=2, _stemname1="", _stemname2=""):
    device = torch.device('cuda:0') if torch.cuda.is_available() else torch.device('cpu')
    #device_properties = torch.cuda.get_device_properties(device)
    print("Device", device)
    vram_gb = 12 #device_properties.total_memory / 1024**3
    m_threads = 1 if vram_gb < 8 else 2
    model_hash = MDX.get_hash(model_path)
    mp = model_params.get(model_hash)
    model = MDXModel(
        device,
        dim_f=mp["mdx_dim_f_set"],
        dim_t=2 ** mp["mdx_dim_t_set"],
        n_fft=mp["mdx_n_fft_scale_set"],
        stem_name=mp["primary_stem"],
        compensation=mp["compensate"]
    )
    mdx_sess = MDX(model_path, model)
    wave, sr = librosa.load(filename, mono=False, sr=44100)
    # normalizing input wave gives better output
    peak = max(np.max(wave), abs(np.min(wave)))
    wave /= peak
    if denoise:
        wave_processed = -(mdx_sess.process_wave(-wave, m_threads)) + (mdx_sess.process_wave(wave, m_threads))
        wave_processed *= 0.5
    else:
        wave_processed = mdx_sess.process_wave(wave, m_threads)
    # return to previous peak
    wave_processed *= peak
    stem_name = model.stem_name if suffix is None else suffix
    main_filepath = None
    if not exclude_main:
        main_filepath = os.path.join(output_dir, f"{os.path.basename(os.path.splitext(filename)[0])}_{stem_name}{_stemname1}.mp3")
        sf.write(main_filepath, wave_processed.T, sr)
    invert_filepath = None
    if not exclude_inversion:
        diff_stem_name = stem_naming.get(stem_name) if invert_suffix is None else invert_suffix
        stem_name = f"{stem_name}_diff" if diff_stem_name is None else diff_stem_name
        invert_filepath = os.path.join(output_dir, f"{os.path.basename(os.path.splitext(filename)[0])}_{stem_name}{_stemname2}.mp3")
        sf.write(invert_filepath, (-wave_processed.T * model.compensation) + wave.T, sr)
    if not keep_orig:
        os.remove(filename)
    del mdx_sess, wave_processed, wave
    gc.collect()
    return main_filepath, invert_filepath
 | 
