File size: 15,138 Bytes
5325678
 
 
 
 
 
 
16783d5
 
 
 
 
 
 
 
 
 
 
 
57c2ca7
16783d5
 
 
 
 
 
 
 
 
 
 
 
5325678
0970f00
5325678
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
08ab2b7
5325678
 
 
 
 
 
 
 
 
 
 
 
 
fb978de
5325678
 
 
 
 
 
 
 
 
 
 
 
 
fb978de
5325678
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
16783d5
5325678
 
 
 
 
 
b522936
5325678
b522936
fb978de
5325678
 
 
 
 
 
fb978de
5325678
 
fb978de
 
5325678
 
a831e4f
5325678
 
a831e4f
5325678
 
3fb09d1
af80876
0c8df5b
9a02287
4c97b2d
16783d5
fb978de
 
 
40500cc
5325678
 
 
9605baa
45d8e04
 
a831e4f
 
7ef93b0
a831e4f
 
45d8e04
5325678
 
16783d5
5325678
 
 
 
 
16783d5
 
5325678
 
 
 
 
 
 
 
 
16783d5
5325678
 
 
 
 
 
 
 
 
b522936
16783d5
5325678
 
 
45d8e04
 
5325678
 
 
 
 
 
 
 
16783d5
 
 
 
5325678
 
16783d5
 
 
 
5325678
 
 
 
16783d5
 
 
c10d558
 
16783d5
 
 
 
 
 
 
 
5325678
 
16783d5
5325678
 
 
 
 
 
 
 
 
 
 
45d8e04
 
5325678
 
 
 
 
 
16783d5
a831e4f
5325678
 
98cf720
16783d5
5325678
972a352
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
import pandas as pd
from openai import OpenAI
import json
import gradio as gr

client = OpenAI()

def generate_questions(category, num_categories, num_questions):
    if category == "":
        category = "general knowledge"
    print(category)
    response = client.chat.completions.create(
        model="gpt-4o-mini",
        messages=[
            {
                "role": "user",
                "content": [
                    {
                        "type": "text",
                        "text": f"Break the category \"{category}\" into {num_categories} subcategories, and for each subcategory create {num_questions} True/False questions ranging from a question a Beginner would know to a question only an Expert would know. There should be as many True as False, and the structure of the questions should not make it obvious which is the answer. Only experts should get the hard questions right. Provide the correct answers and a field with a 1 sentence explanation. This will total out to {num_categories * num_questions} questions. Output just a JSON, nothing else. Below is an example JSON output for \"nutrition\" where 6 categories of 5 questions were requested, but remember, for you, there should be a total of {num_categories * num_questions} questions with {num_categories} categories and {num_questions} questions per category.\n\n```json\n{{\n  \"Macronutrients\": [\n    {{\n      \"question\": \"Protein is one of the three primary macronutrients.\",\n      \"answer\": True,\n      \"explanation\": \"Protein is one of the three primary macronutrients, along with carbohydrates and fats.\"\n    }},\n    {{\n      \"question\": \"Carbohydrates are the body's main source of energy.\",\n      \"answer\": True,\n      \"explanation\": \"Carbohydrates are typically the body's preferred energy source.\"\n    }},\n    {{\n      \"question\": \"Fats have the same caloric content per gram as carbohydrates.\",\n      \"answer\": False,\n      \"explanation\": \"Fats have 9 calories per gram, while carbohydrates have 4 calories per gram.\"\n    }},\n    {{\n      \"question\": \"All proteins are equally effective for muscle growth.\",\n      \"answer\": False,\n      \"explanation\": \"Different proteins have varying amino acid profiles and bioavailability, affecting their effectiveness.\"\n    }},\n    {{\n      \"question\": \"Omega-3 fatty acids are a type of fat that can reduce inflammation.\",\n      \"answer\": True,\n      \"explanation\": \"Omega-3 fatty acids, found in foods like fish, are known to have anti-inflammatory properties.\"\n    }}\n  ],\n  \"Micronutrients\": [\n    {{ ...\"}}"
                    }
                ]
            }
        ],
        response_format={"type": "json_object"},
        temperature=1,
        max_tokens=4071,
        top_p=1,
        frequency_penalty=0,
        presence_penalty=0
    )
    return json.loads(response.choices[0].message.content)

# Function to calculate Metaknowledge score
def calculate_meta_cog_score(df):
    df['Correct'] = df['User Answer'] == df['Correct Answer']
    df['C'] = df['Correct'].apply(lambda x: 1 if x else -1)
    n = len(df)
    sum_C_Conf = (df['C'] * df['Confidence']).sum()
    meta_cog_ratio = 0.5 + (sum_C_Conf / (2 * n))
    return meta_cog_ratio

def display_current_question(questions, index):
    if index < len(questions):
        question = questions[index]
        return (
            f"**Question {index + 1}:** {question['question']}",
            None, None, True
        )
    else:
        return ("", None, None, False)

def calculate_scores(df):
    df['Correct'] = df['User Answer'] == df['Correct Answer']
    df['C'] = df['Correct'].apply(lambda x: 1 if x else 0)

    # Expected score based on confidence
    df['Expected Score'] = df['Confidence']
    df['Actual Score'] = df['C']

    # Difference between expected and actual scores
    df['Overconfidence'] = (df['Expected Score'] > df['Actual Score']).astype(float) * (df['Expected Score'] - df['Actual Score'])
    df['Underconfidence'] = (df['Expected Score'] < df['Actual Score']).astype(float) * (df['Actual Score'] - df['Expected Score'])

    n = len(df)
    sum_C_Conf = (df['C'] * df['Confidence']).sum()
    meta_cog_ratio = 0.5 + (sum_C_Conf / (2 * n))

    accuracy = df['Correct'].mean()
    overconfidence = df['Overconfidence'].sum() / n
    underconfidence = df['Underconfidence'].sum() / n

    return {
        # 'Metaknowledge Score': f"{round(meta_cog_ratio * 100, 0)}%",
        'Accuracy': f"{round(accuracy * 100, 0)}%",
        'Overconfidence': f"{round(overconfidence * 100, 0)}%",
        'Underconfidence': f"{round(underconfidence * 100, 0)}%"
    }

# Function to analyze results using GPT-4o-mini
def analyze_results(df, overall_scores, subcategory_scores):
    # Prepare the data for analysis
    questions = df['Question'].tolist()
    correct_answers = df['Correct Answer'].tolist()
    user_answers = df['User Answer'].tolist()
    explanations = df['Explanation'].tolist()
    confidence = df['Confidence'].tolist()
    subcategories = df['Section'].tolist()

    # Generate a summary of the results
    response = client.chat.completions.create(
        model="gpt-4o-mini",
        messages=[
            {
                "role": "user",
                "content": f"""
                Analyze the following quiz results:
                - Overall Accuracy: {overall_scores['Accuracy']}
                - Overall Overconfidence: {overall_scores['Overconfidence']}
                - Overall Underconfidence: {overall_scores['Underconfidence']}

                Section scores:
                {subcategory_scores}

                The following is a list of my answers and confidence levels for each question, with the correct answers and subcategory:
                {list(zip(questions, user_answers, correct_answers, explanations, confidence, subcategories))}

                Provide an analysis of what I got wrong in terms of overall sections and specific questions, as well as what I was overconfident and underconfident in. Don't use numbers, as they're already displayed elsewhere.
                The analysis should be only about 2 paragraphs. Write the subcategory names in bold when you use them.
                """
            }
        ],
        # response_format={ "type": "json_object" },
        temperature=0.7,
        max_tokens=1024,
        top_p=1,
        frequency_penalty=0,
        presence_penalty=0
    )

    analysis = response.choices[0].message.content

    # Start the table with larger column titles using <b> for bold and <span> for custom styling
    question_details = (
        "<table><thead><tr>"
        "<th><b><span style='font-size:16px'>Question</span></b></th>"
        "<th><b><span style='font-size:16px'>User Answer</span></b></th>"
        "<th><b><span style='font-size:16px'>Correct Answer</span></b></th>"
        "<th><b><span style='font-size:16px'>Explanation</span></b></th>"
        "</tr></thead><tbody>"
    )

    for q, ua, ca, subcategory, e in zip(questions, user_answers, correct_answers, subcategories, explanations):
        user_answer_str = 'True' if ua else 'False'
        correct_answer_str = 'True' if ca else 'False'

        # Check if the answer is incorrect
        if ua != ca:
            question_details += (
                f"<tr><td><b>{q}</b></td><td><b>{user_answer_str}</b></td>"
                f"<td><b>{correct_answer_str}</b></td><td><b>{e}</b></td></tr>"
            )
        else:
            question_details += (
                f"<tr><td>{q}</td><td>{user_answer_str}</td>"
                f"<td>{correct_answer_str}</td><td>{e}</td></tr>"
            )

    question_details += "</tbody></table>"

    return f"## Analysis of Results\n\n{analysis}\n\n## Detailed Questions and Answers\n\n{question_details}"

# Modify the submit_answer function to include analysis
def submit_answer(category, num_categories, num_questions, questions, index, user_answer, confidence, user_answers):
    question_data = questions[index]
    subcategory = question_data["subcategory"]

    user_answers.append({
        "Question": question_data["question"],
        "Explanation": question_data["explanation"],
        "User Answer": confidence > 0.5,
        "Correct Answer": question_data["answer"],
        "Confidence": 2*abs(confidence-0.5),
        "Section": subcategory
    })
    index += 1

    if index >= len(questions):
        df = pd.DataFrame(user_answers)
        overall_scores = calculate_scores(df)
        subcategory_scores = df.groupby('Section').apply(calculate_scores).to_dict()
        analysis = analyze_results(df, overall_scores, subcategory_scores)

        overall_score_df = pd.DataFrame([["Overall", *overall_scores.values()]], columns=['Section', 'Accuracy', 'Overconfidence', 'Underconfidence'])
        subcategory_scores_df = pd.DataFrame([(subcategory, *score.values()) for subcategory, score in subcategory_scores.items()], columns=['Section', 'Accuracy', 'Overconfidence', 'Underconfidence'])
        results_df = pd.concat([overall_score_df, subcategory_scores_df], ignore_index=True)
        results_df = gr.DataFrame(label="Results", value=results_df, visible=True)
        return "", index, gr.update(visible=False), user_answers, results_df, gr.update(visible=False), gr.update(visible=False), gr.update(value=analysis, visible=True), gr.update(visible=False)
    else:
        question_text, _, _, visible = display_current_question(questions, index)
        return question_text, index, gr.update(visible=True), user_answers, gr.update(visible=False), gr.update(visible=True, value=0.5), gr.update(visible=False, value=None), gr.update(visible=False), gr.update(visible=True)

# Gradio UI setup
with gr.Blocks(theme="soft", css="footer{display:none !important}") as app:
    # with gr.Row():
        # gr.Markdown("""## &nbsp; Deep Quizzer <img src="file/Subject.png" img align="left" width="20" height="20" />""")
        # gr.Markdown("""<img src="file/Subject.png" img align="left" width="40" height="40" />""")
    gr.Markdown("""Discover what you truly know and ***how aware you are of your knowledge***. Deep Quizzer identifies gaps in your understanding and helps boost your confidence in areas you excel. Take a quiz to sharpen your skills and knowledge today!""")
    with gr.Row():
      category_input = gr.Textbox(label="Topic", placeholder="general knowledge", scale=4)
      num_categories_input = gr.Number(label="Number of Sections", value=5, scale=1, maximum=6)
      num_questions_input = gr.Number(label="Questions per Section", value=5, scale=1, maximum=6)
      total_questions_display = gr.Number(label="Total Questions in Quiz", value=25, scale=1)
    submit_category = gr.Button("Generate Quiz")
    question_area = gr.Markdown(visible=False)
    answer_area = gr.Radio(["True", "False"], label="Your Answer", visible=False)
    with gr.Column():
        confidence_slider = gr.Slider(0, 1, value=0.5, visible=False, container=False)#, label="Confidence Level",)
        with gr.Row(visible=False) as guides:
            gr.Markdown('<p style="text-align: left;">False</p>')
            gr.Markdown('<p style="text-align: left;">Maybe False</p>')
            gr.Markdown('<p style="text-align: center;">Not Sure</p>')
            gr.Markdown('<p style="text-align: right;">Maybe True</p>')
            gr.Markdown('<p style="text-align: right;">True</p>')

    submit_answer_btn = gr.Button("Submit Answer", visible=False)
    result_area = gr.DataFrame(label="Results", visible=False)
    loading_text = gr.Textbox(label="Generating Quiz...", visible=False)
    analysis_area = gr.Markdown(visible=False)  # Add this line for analysis area
    questions_state = gr.State()
    index_state = gr.State(0)
    user_answers_state = gr.State([])

    def on_generate_quiz(category, num_categories, num_questions):
        questions_data = generate_questions(category, num_categories, num_questions)

        questions = []
        for subcategory, qs in questions_data.items():
            for q in qs:
                q["subcategory"] = subcategory
                questions.append(q)

        import random
        random.shuffle(questions)
        print(len(questions))

        index = 0
        question_text, _, _, visible = display_current_question(questions, index)
        return (
            gr.update(value=question_text, visible=visible),
            questions,
            index,
            [],
            gr.update(visible=visible),
            gr.update(visible=False, value=None),
            gr.update(visible=True, value=0.5),
            gr.update(visible=True),
            gr.update(visible=False),
            gr.update(visible=False),
            gr.update(visible=False),
            gr.update(visible=True)
        )

    def remove_button():
        return gr.update(visible=False)

    def display_loading():
        return gr.update(visible=True)

    def update_total_questions(num_categories, num_questions):
        total_questions = num_categories * num_questions
        return gr.update(value=total_questions)

    def display_results(index, questions):
        if index >= len(questions):
            return gr.update(visible=True)

    num_categories_input.change(update_total_questions, inputs=[num_categories_input, num_questions_input], outputs=[total_questions_display])
    num_questions_input.change(update_total_questions, inputs=[num_categories_input, num_questions_input], outputs=[total_questions_display])

    submit_category.click(remove_button, inputs=[], outputs=[submit_category])
    submit_category.click(display_loading, inputs=[], outputs=[loading_text])

    def make_uninteractive():
        return (
            gr.update(interactive=False),
            gr.update(interactive=False, visible=False),
            gr.update(interactive=False, visible=False)
        )

    submit_category.click(
        make_uninteractive,
        inputs=[],
        outputs=[category_input, num_categories_input, num_questions_input]
    )

    submit_category.click(
        on_generate_quiz,
        inputs=[category_input, num_categories_input, num_questions_input],
        outputs=[
            question_area,
            questions_state,
            index_state,
            user_answers_state,
            question_area,
            answer_area,
            confidence_slider,
            submit_answer_btn,
            result_area,
            submit_category,
            loading_text,
            guides
        ]
    )


    submit_answer_btn.click(
        submit_answer,
        inputs=[category_input, num_categories_input, num_questions_input, questions_state, index_state, answer_area, confidence_slider, user_answers_state],
        outputs=[question_area, index_state, submit_answer_btn, user_answers_state, result_area, confidence_slider, answer_area, analysis_area, guides]  # Add analysis_area here
    )

    submit_answer_btn.click(display_results, inputs=[index_state, questions_state], outputs=[result_area])
    
# Launch the app
app.launch(share=False, allowed_paths=["/"])