File size: 14,539 Bytes
308c973
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
import os
import random
import json
import torch

import torch.nn as nn
import torchvision.transforms as transforms
import torchvision.transforms.functional as F
import numpy as np

from decord import VideoReader
from torch.utils.data.dataset import Dataset
from packaging import version as pver


class RandomHorizontalFlipWithPose(nn.Module):
    def __init__(self, p=0.5):
        super(RandomHorizontalFlipWithPose, self).__init__()
        self.p = p

    def get_flip_flag(self, n_image):
        return torch.rand(n_image) < self.p

    def forward(self, image, flip_flag=None):
        n_image = image.shape[0]
        if flip_flag is not None:
            assert n_image == flip_flag.shape[0]
        else:
            flip_flag = self.get_flip_flag(n_image)

        ret_images = []
        for fflag, img in zip(flip_flag, image):
            if fflag:
                ret_images.append(F.hflip(img))
            else:
                ret_images.append(img)
        return torch.stack(ret_images, dim=0)


class Camera(object):
    def __init__(self, entry):
        fx, fy, cx, cy = entry[1:5]
        self.fx = fx
        self.fy = fy
        self.cx = cx
        self.cy = cy
        w2c_mat = np.array(entry[7:]).reshape(3, 4)
        w2c_mat_4x4 = np.eye(4)
        w2c_mat_4x4[:3, :] = w2c_mat
        self.w2c_mat = w2c_mat_4x4
        self.c2w_mat = np.linalg.inv(w2c_mat_4x4)


def custom_meshgrid(*args):
    # ref: https://pytorch.org/docs/stable/generated/torch.meshgrid.html?highlight=meshgrid#torch.meshgrid
    if pver.parse(torch.__version__) < pver.parse('1.10'):
        return torch.meshgrid(*args)
    else:
        return torch.meshgrid(*args, indexing='ij')


def ray_condition(K, c2w, H, W, device, flip_flag=None):
    # c2w: B, V, 4, 4
    # K: B, V, 4

    B, V = K.shape[:2]

    j, i = custom_meshgrid(
        torch.linspace(0, H - 1, H, device=device, dtype=c2w.dtype),
        torch.linspace(0, W - 1, W, device=device, dtype=c2w.dtype),
    )
    i = i.reshape([1, 1, H * W]).expand([B, V, H * W]) + 0.5          # [B, V, HxW]
    j = j.reshape([1, 1, H * W]).expand([B, V, H * W]) + 0.5          # [B, V, HxW]

    n_flip = torch.sum(flip_flag).item() if flip_flag is not None else 0
    if n_flip > 0:
        j_flip, i_flip = custom_meshgrid(
            torch.linspace(0, H - 1, H, device=device, dtype=c2w.dtype),
            torch.linspace(W - 1, 0, W, device=device, dtype=c2w.dtype)
        )
        i_flip = i_flip.reshape([1, 1, H * W]).expand(B, 1, H * W) + 0.5
        j_flip = j_flip.reshape([1, 1, H * W]).expand(B, 1, H * W) + 0.5
        i[:, flip_flag, ...] = i_flip
        j[:, flip_flag, ...] = j_flip

    fx, fy, cx, cy = K.chunk(4, dim=-1)     # B,V, 1

    zs = torch.ones_like(i)                 # [B, V, HxW]
    xs = (i - cx) / fx * zs
    ys = (j - cy) / fy * zs
    zs = zs.expand_as(ys)

    directions = torch.stack((xs, ys, zs), dim=-1)              # B, V, HW, 3
    directions = directions / directions.norm(dim=-1, keepdim=True)             # B, V, HW, 3

    rays_d = directions @ c2w[..., :3, :3].transpose(-1, -2)        # B, V, HW, 3
    rays_o = c2w[..., :3, 3]                                        # B, V, 3
    rays_o = rays_o[:, :, None].expand_as(rays_d)                   # B, V, HW, 3
    # c2w @ dirctions
    rays_dxo = torch.linalg.cross(rays_o, rays_d)                          # B, V, HW, 3
    plucker = torch.cat([rays_dxo, rays_d], dim=-1)
    plucker = plucker.reshape(B, c2w.shape[1], H, W, 6)             # B, V, H, W, 6
    # plucker = plucker.permute(0, 1, 4, 2, 3)
    return plucker


class RealEstate10K(Dataset):
    def __init__(
            self,
            root_path,
            annotation_json,
            sample_stride=4,
            sample_n_frames=16,
            sample_size=[256, 384],
            is_image=False,
    ):
        self.root_path = root_path
        self.sample_stride = sample_stride
        self.sample_n_frames = sample_n_frames
        self.is_image = is_image

        self.dataset = json.load(open(os.path.join(root_path, annotation_json), 'r'))
        self.length = len(self.dataset)

        sample_size = tuple(sample_size) if not isinstance(sample_size, int) else (sample_size, sample_size)
        pixel_transforms = [transforms.Resize(sample_size),
                            transforms.RandomHorizontalFlip(),
                            transforms.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5], inplace=True)]

        self.pixel_transforms = transforms.Compose(pixel_transforms)

    def load_video_reader(self, idx):
        video_dict = self.dataset[idx]

        video_path = os.path.join(self.root_path, video_dict['clip_path'])
        video_reader = VideoReader(video_path)
        return video_reader, video_dict['caption']

    def get_batch(self, idx):
        video_reader, video_caption = self.load_video_reader(idx)
        total_frames = len(video_reader)

        if self.is_image:
            frame_indice = [random.randint(0, total_frames - 1)]
        else:
            if isinstance(self.sample_stride, int):
                current_sample_stride = self.sample_stride
            else:
                assert len(self.sample_stride) == 2
                assert (self.sample_stride[0] >= 1) and (self.sample_stride[1] >= self.sample_stride[0])
                current_sample_stride = random.randint(self.sample_stride[0], self.sample_stride[1])

            cropped_length = self.sample_n_frames * current_sample_stride
            start_frame_ind = random.randint(0, max(0, total_frames - cropped_length - 1))
            end_frame_ind = min(start_frame_ind + cropped_length, total_frames)

            assert end_frame_ind - start_frame_ind >= self.sample_n_frames
            frame_indice = np.linspace(start_frame_ind, end_frame_ind - 1, self.sample_n_frames, dtype=int)

        pixel_values = torch.from_numpy(video_reader.get_batch(frame_indice).asnumpy()).permute(0, 3, 1, 2).contiguous()
        pixel_values = pixel_values / 255.

        if self.is_image:
            pixel_values = pixel_values[0]

        return pixel_values, video_caption

    def __len__(self):
        return self.length

    def __getitem__(self, idx):
        while True:
            try:
                video, video_caption = self.get_batch(idx)
                break

            except Exception as e:
                idx = random.randint(0, self.length - 1)

        video = self.pixel_transforms(video)
        sample = dict(pixel_values=video, caption=video_caption)

        return sample


class RealEstate10KPose(Dataset):
    def __init__(
            self,
            root_path,
            annotation_json,
            sample_stride=4,
            minimum_sample_stride=1,
            sample_n_frames=16,
            relative_pose=False,
            zero_t_first_frame=False,
            sample_size=[256, 384],
            rescale_fxy=False,
            shuffle_frames=False,
            use_flip=False,
            return_clip_name=False,
    ):
        self.root_path = root_path
        self.relative_pose = relative_pose
        self.zero_t_first_frame = zero_t_first_frame
        self.sample_stride = sample_stride
        self.minimum_sample_stride = minimum_sample_stride
        self.sample_n_frames = sample_n_frames
        self.return_clip_name = return_clip_name

        self.dataset = json.load(open(os.path.join(root_path, annotation_json), 'r'))
        self.length = len(self.dataset)

        sample_size = tuple(sample_size) if not isinstance(sample_size, int) else (sample_size, sample_size)
        self.sample_size = sample_size
        if use_flip:
            pixel_transforms = [transforms.Resize(sample_size),
                                RandomHorizontalFlipWithPose(),
                                transforms.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5], inplace=True)]
        else:
            pixel_transforms = [transforms.Resize(sample_size),
                                transforms.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5], inplace=True)]
        self.rescale_fxy = rescale_fxy
        self.sample_wh_ratio = sample_size[1] / sample_size[0]

        self.pixel_transforms = pixel_transforms
        self.shuffle_frames = shuffle_frames
        self.use_flip = use_flip

    def get_relative_pose(self, cam_params):
        abs_w2cs = [cam_param.w2c_mat for cam_param in cam_params]
        abs_c2ws = [cam_param.c2w_mat for cam_param in cam_params]
        source_cam_c2w = abs_c2ws[0]
        if self.zero_t_first_frame:
            cam_to_origin = 0
        else:
            cam_to_origin = np.linalg.norm(source_cam_c2w[:3, 3])
        target_cam_c2w = np.array([
            [1, 0, 0, 0],
            [0, 1, 0, -cam_to_origin],
            [0, 0, 1, 0],
            [0, 0, 0, 1]
        ])
        abs2rel = target_cam_c2w @ abs_w2cs[0]
        ret_poses = [target_cam_c2w, ] + [abs2rel @ abs_c2w for abs_c2w in abs_c2ws[1:]]
        ret_poses = np.array(ret_poses, dtype=np.float32)
        return ret_poses

    def load_video_reader(self, idx):
        video_dict = self.dataset[idx]

        video_path = os.path.join(self.root_path, video_dict['clip_path'])
        video_reader = VideoReader(video_path)
        return video_dict['clip_name'], video_reader, video_dict['caption']

    def load_cameras(self, idx):
        video_dict = self.dataset[idx]
        pose_file = os.path.join(self.root_path, video_dict['pose_file'])
        with open(pose_file, 'r') as f:
            poses = f.readlines()
        poses = [pose.strip().split(' ') for pose in poses[1:]]
        cam_params = [[float(x) for x in pose] for pose in poses]
        cam_params = [Camera(cam_param) for cam_param in cam_params]
        return cam_params

    def get_batch(self, idx):
        clip_name, video_reader, video_caption = self.load_video_reader(idx)
        cam_params = self.load_cameras(idx)
        assert len(cam_params) >= self.sample_n_frames
        total_frames = len(cam_params)

        current_sample_stride = self.sample_stride

        if total_frames < self.sample_n_frames * current_sample_stride:
            maximum_sample_stride = int(total_frames // self.sample_n_frames)
            current_sample_stride = random.randint(self.minimum_sample_stride, maximum_sample_stride)

        cropped_length = self.sample_n_frames * current_sample_stride
        start_frame_ind = random.randint(0, max(0, total_frames - cropped_length - 1))
        end_frame_ind = min(start_frame_ind + cropped_length, total_frames)

        assert end_frame_ind - start_frame_ind >= self.sample_n_frames
        frame_indices = np.linspace(start_frame_ind, end_frame_ind - 1, self.sample_n_frames, dtype=int)

        condition_image_ind = random.sample(list(set(range(total_frames)) - set(frame_indices.tolist())), 1)
        condition_image = torch.from_numpy(video_reader.get_batch(condition_image_ind).asnumpy()).permute(0, 3, 1, 2).contiguous()
        condition_image = condition_image / 255.

        if self.shuffle_frames:
            perm = np.random.permutation(self.sample_n_frames)
            frame_indices = frame_indices[perm]

        pixel_values = torch.from_numpy(video_reader.get_batch(frame_indices).asnumpy()).permute(0, 3, 1, 2).contiguous()
        pixel_values = pixel_values / 255.

        cam_params = [cam_params[indice] for indice in frame_indices]
        if self.rescale_fxy:
            ori_h, ori_w = pixel_values.shape[-2:]
            ori_wh_ratio = ori_w / ori_h
            if ori_wh_ratio > self.sample_wh_ratio:       # rescale fx
                resized_ori_w = self.sample_size[0] * ori_wh_ratio
                for cam_param in cam_params:
                    cam_param.fx = resized_ori_w * cam_param.fx / self.sample_size[1]
            else:                                          # rescale fy
                resized_ori_h = self.sample_size[1] / ori_wh_ratio
                for cam_param in cam_params:
                    cam_param.fy = resized_ori_h * cam_param.fy / self.sample_size[0]
        intrinsics = np.asarray([[cam_param.fx * self.sample_size[1],
                                  cam_param.fy * self.sample_size[0],
                                  cam_param.cx * self.sample_size[1],
                                  cam_param.cy * self.sample_size[0]]
                                 for cam_param in cam_params], dtype=np.float32)
        intrinsics = torch.as_tensor(intrinsics)[None]                  # [1, n_frame, 4]
        if self.relative_pose:
            c2w_poses = self.get_relative_pose(cam_params)
        else:
            c2w_poses = np.array([cam_param.c2w_mat for cam_param in cam_params], dtype=np.float32)
        c2w = torch.as_tensor(c2w_poses)[None]                          # [1, n_frame, 4, 4]
        if self.use_flip:
            flip_flag = self.pixel_transforms[1].get_flip_flag(self.sample_n_frames)
        else:
            flip_flag = torch.zeros(self.sample_n_frames, dtype=torch.bool, device=c2w.device)
        plucker_embedding = ray_condition(intrinsics, c2w, self.sample_size[0], self.sample_size[1], device='cpu',
                                          flip_flag=flip_flag)[0].permute(0, 3, 1, 2).contiguous()

        return pixel_values, condition_image, plucker_embedding, video_caption, flip_flag, clip_name

    def __len__(self):
        return self.length

    def __getitem__(self, idx):
        while True:
            try:
                video, condition_image, plucker_embedding, video_caption, flip_flag, clip_name = self.get_batch(idx)
                break

            except Exception as e:
                idx = random.randint(0, self.length - 1)

        if self.use_flip:
            video = self.pixel_transforms[0](video)
            video = self.pixel_transforms[1](video, flip_flag)
            for transform in self.pixel_transforms[2:]:
                video = transform(video)
        else:
            for transform in self.pixel_transforms:
                video = transform(video)
        for transform in self.pixel_transforms:
            condition_image = transform(condition_image)
        if self.return_clip_name:
            sample = dict(pixel_values=video, condition_image=condition_image, plucker_embedding=plucker_embedding, video_caption=video_caption, clip_name=clip_name)
        else:
            sample = dict(pixel_values=video, condition_image=condition_image, plucker_embedding=plucker_embedding, video_caption=video_caption)

        return sample