Spaces:
Runtime error
Runtime error
File size: 14,539 Bytes
308c973 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 |
import os
import random
import json
import torch
import torch.nn as nn
import torchvision.transforms as transforms
import torchvision.transforms.functional as F
import numpy as np
from decord import VideoReader
from torch.utils.data.dataset import Dataset
from packaging import version as pver
class RandomHorizontalFlipWithPose(nn.Module):
def __init__(self, p=0.5):
super(RandomHorizontalFlipWithPose, self).__init__()
self.p = p
def get_flip_flag(self, n_image):
return torch.rand(n_image) < self.p
def forward(self, image, flip_flag=None):
n_image = image.shape[0]
if flip_flag is not None:
assert n_image == flip_flag.shape[0]
else:
flip_flag = self.get_flip_flag(n_image)
ret_images = []
for fflag, img in zip(flip_flag, image):
if fflag:
ret_images.append(F.hflip(img))
else:
ret_images.append(img)
return torch.stack(ret_images, dim=0)
class Camera(object):
def __init__(self, entry):
fx, fy, cx, cy = entry[1:5]
self.fx = fx
self.fy = fy
self.cx = cx
self.cy = cy
w2c_mat = np.array(entry[7:]).reshape(3, 4)
w2c_mat_4x4 = np.eye(4)
w2c_mat_4x4[:3, :] = w2c_mat
self.w2c_mat = w2c_mat_4x4
self.c2w_mat = np.linalg.inv(w2c_mat_4x4)
def custom_meshgrid(*args):
# ref: https://pytorch.org/docs/stable/generated/torch.meshgrid.html?highlight=meshgrid#torch.meshgrid
if pver.parse(torch.__version__) < pver.parse('1.10'):
return torch.meshgrid(*args)
else:
return torch.meshgrid(*args, indexing='ij')
def ray_condition(K, c2w, H, W, device, flip_flag=None):
# c2w: B, V, 4, 4
# K: B, V, 4
B, V = K.shape[:2]
j, i = custom_meshgrid(
torch.linspace(0, H - 1, H, device=device, dtype=c2w.dtype),
torch.linspace(0, W - 1, W, device=device, dtype=c2w.dtype),
)
i = i.reshape([1, 1, H * W]).expand([B, V, H * W]) + 0.5 # [B, V, HxW]
j = j.reshape([1, 1, H * W]).expand([B, V, H * W]) + 0.5 # [B, V, HxW]
n_flip = torch.sum(flip_flag).item() if flip_flag is not None else 0
if n_flip > 0:
j_flip, i_flip = custom_meshgrid(
torch.linspace(0, H - 1, H, device=device, dtype=c2w.dtype),
torch.linspace(W - 1, 0, W, device=device, dtype=c2w.dtype)
)
i_flip = i_flip.reshape([1, 1, H * W]).expand(B, 1, H * W) + 0.5
j_flip = j_flip.reshape([1, 1, H * W]).expand(B, 1, H * W) + 0.5
i[:, flip_flag, ...] = i_flip
j[:, flip_flag, ...] = j_flip
fx, fy, cx, cy = K.chunk(4, dim=-1) # B,V, 1
zs = torch.ones_like(i) # [B, V, HxW]
xs = (i - cx) / fx * zs
ys = (j - cy) / fy * zs
zs = zs.expand_as(ys)
directions = torch.stack((xs, ys, zs), dim=-1) # B, V, HW, 3
directions = directions / directions.norm(dim=-1, keepdim=True) # B, V, HW, 3
rays_d = directions @ c2w[..., :3, :3].transpose(-1, -2) # B, V, HW, 3
rays_o = c2w[..., :3, 3] # B, V, 3
rays_o = rays_o[:, :, None].expand_as(rays_d) # B, V, HW, 3
# c2w @ dirctions
rays_dxo = torch.linalg.cross(rays_o, rays_d) # B, V, HW, 3
plucker = torch.cat([rays_dxo, rays_d], dim=-1)
plucker = plucker.reshape(B, c2w.shape[1], H, W, 6) # B, V, H, W, 6
# plucker = plucker.permute(0, 1, 4, 2, 3)
return plucker
class RealEstate10K(Dataset):
def __init__(
self,
root_path,
annotation_json,
sample_stride=4,
sample_n_frames=16,
sample_size=[256, 384],
is_image=False,
):
self.root_path = root_path
self.sample_stride = sample_stride
self.sample_n_frames = sample_n_frames
self.is_image = is_image
self.dataset = json.load(open(os.path.join(root_path, annotation_json), 'r'))
self.length = len(self.dataset)
sample_size = tuple(sample_size) if not isinstance(sample_size, int) else (sample_size, sample_size)
pixel_transforms = [transforms.Resize(sample_size),
transforms.RandomHorizontalFlip(),
transforms.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5], inplace=True)]
self.pixel_transforms = transforms.Compose(pixel_transforms)
def load_video_reader(self, idx):
video_dict = self.dataset[idx]
video_path = os.path.join(self.root_path, video_dict['clip_path'])
video_reader = VideoReader(video_path)
return video_reader, video_dict['caption']
def get_batch(self, idx):
video_reader, video_caption = self.load_video_reader(idx)
total_frames = len(video_reader)
if self.is_image:
frame_indice = [random.randint(0, total_frames - 1)]
else:
if isinstance(self.sample_stride, int):
current_sample_stride = self.sample_stride
else:
assert len(self.sample_stride) == 2
assert (self.sample_stride[0] >= 1) and (self.sample_stride[1] >= self.sample_stride[0])
current_sample_stride = random.randint(self.sample_stride[0], self.sample_stride[1])
cropped_length = self.sample_n_frames * current_sample_stride
start_frame_ind = random.randint(0, max(0, total_frames - cropped_length - 1))
end_frame_ind = min(start_frame_ind + cropped_length, total_frames)
assert end_frame_ind - start_frame_ind >= self.sample_n_frames
frame_indice = np.linspace(start_frame_ind, end_frame_ind - 1, self.sample_n_frames, dtype=int)
pixel_values = torch.from_numpy(video_reader.get_batch(frame_indice).asnumpy()).permute(0, 3, 1, 2).contiguous()
pixel_values = pixel_values / 255.
if self.is_image:
pixel_values = pixel_values[0]
return pixel_values, video_caption
def __len__(self):
return self.length
def __getitem__(self, idx):
while True:
try:
video, video_caption = self.get_batch(idx)
break
except Exception as e:
idx = random.randint(0, self.length - 1)
video = self.pixel_transforms(video)
sample = dict(pixel_values=video, caption=video_caption)
return sample
class RealEstate10KPose(Dataset):
def __init__(
self,
root_path,
annotation_json,
sample_stride=4,
minimum_sample_stride=1,
sample_n_frames=16,
relative_pose=False,
zero_t_first_frame=False,
sample_size=[256, 384],
rescale_fxy=False,
shuffle_frames=False,
use_flip=False,
return_clip_name=False,
):
self.root_path = root_path
self.relative_pose = relative_pose
self.zero_t_first_frame = zero_t_first_frame
self.sample_stride = sample_stride
self.minimum_sample_stride = minimum_sample_stride
self.sample_n_frames = sample_n_frames
self.return_clip_name = return_clip_name
self.dataset = json.load(open(os.path.join(root_path, annotation_json), 'r'))
self.length = len(self.dataset)
sample_size = tuple(sample_size) if not isinstance(sample_size, int) else (sample_size, sample_size)
self.sample_size = sample_size
if use_flip:
pixel_transforms = [transforms.Resize(sample_size),
RandomHorizontalFlipWithPose(),
transforms.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5], inplace=True)]
else:
pixel_transforms = [transforms.Resize(sample_size),
transforms.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5], inplace=True)]
self.rescale_fxy = rescale_fxy
self.sample_wh_ratio = sample_size[1] / sample_size[0]
self.pixel_transforms = pixel_transforms
self.shuffle_frames = shuffle_frames
self.use_flip = use_flip
def get_relative_pose(self, cam_params):
abs_w2cs = [cam_param.w2c_mat for cam_param in cam_params]
abs_c2ws = [cam_param.c2w_mat for cam_param in cam_params]
source_cam_c2w = abs_c2ws[0]
if self.zero_t_first_frame:
cam_to_origin = 0
else:
cam_to_origin = np.linalg.norm(source_cam_c2w[:3, 3])
target_cam_c2w = np.array([
[1, 0, 0, 0],
[0, 1, 0, -cam_to_origin],
[0, 0, 1, 0],
[0, 0, 0, 1]
])
abs2rel = target_cam_c2w @ abs_w2cs[0]
ret_poses = [target_cam_c2w, ] + [abs2rel @ abs_c2w for abs_c2w in abs_c2ws[1:]]
ret_poses = np.array(ret_poses, dtype=np.float32)
return ret_poses
def load_video_reader(self, idx):
video_dict = self.dataset[idx]
video_path = os.path.join(self.root_path, video_dict['clip_path'])
video_reader = VideoReader(video_path)
return video_dict['clip_name'], video_reader, video_dict['caption']
def load_cameras(self, idx):
video_dict = self.dataset[idx]
pose_file = os.path.join(self.root_path, video_dict['pose_file'])
with open(pose_file, 'r') as f:
poses = f.readlines()
poses = [pose.strip().split(' ') for pose in poses[1:]]
cam_params = [[float(x) for x in pose] for pose in poses]
cam_params = [Camera(cam_param) for cam_param in cam_params]
return cam_params
def get_batch(self, idx):
clip_name, video_reader, video_caption = self.load_video_reader(idx)
cam_params = self.load_cameras(idx)
assert len(cam_params) >= self.sample_n_frames
total_frames = len(cam_params)
current_sample_stride = self.sample_stride
if total_frames < self.sample_n_frames * current_sample_stride:
maximum_sample_stride = int(total_frames // self.sample_n_frames)
current_sample_stride = random.randint(self.minimum_sample_stride, maximum_sample_stride)
cropped_length = self.sample_n_frames * current_sample_stride
start_frame_ind = random.randint(0, max(0, total_frames - cropped_length - 1))
end_frame_ind = min(start_frame_ind + cropped_length, total_frames)
assert end_frame_ind - start_frame_ind >= self.sample_n_frames
frame_indices = np.linspace(start_frame_ind, end_frame_ind - 1, self.sample_n_frames, dtype=int)
condition_image_ind = random.sample(list(set(range(total_frames)) - set(frame_indices.tolist())), 1)
condition_image = torch.from_numpy(video_reader.get_batch(condition_image_ind).asnumpy()).permute(0, 3, 1, 2).contiguous()
condition_image = condition_image / 255.
if self.shuffle_frames:
perm = np.random.permutation(self.sample_n_frames)
frame_indices = frame_indices[perm]
pixel_values = torch.from_numpy(video_reader.get_batch(frame_indices).asnumpy()).permute(0, 3, 1, 2).contiguous()
pixel_values = pixel_values / 255.
cam_params = [cam_params[indice] for indice in frame_indices]
if self.rescale_fxy:
ori_h, ori_w = pixel_values.shape[-2:]
ori_wh_ratio = ori_w / ori_h
if ori_wh_ratio > self.sample_wh_ratio: # rescale fx
resized_ori_w = self.sample_size[0] * ori_wh_ratio
for cam_param in cam_params:
cam_param.fx = resized_ori_w * cam_param.fx / self.sample_size[1]
else: # rescale fy
resized_ori_h = self.sample_size[1] / ori_wh_ratio
for cam_param in cam_params:
cam_param.fy = resized_ori_h * cam_param.fy / self.sample_size[0]
intrinsics = np.asarray([[cam_param.fx * self.sample_size[1],
cam_param.fy * self.sample_size[0],
cam_param.cx * self.sample_size[1],
cam_param.cy * self.sample_size[0]]
for cam_param in cam_params], dtype=np.float32)
intrinsics = torch.as_tensor(intrinsics)[None] # [1, n_frame, 4]
if self.relative_pose:
c2w_poses = self.get_relative_pose(cam_params)
else:
c2w_poses = np.array([cam_param.c2w_mat for cam_param in cam_params], dtype=np.float32)
c2w = torch.as_tensor(c2w_poses)[None] # [1, n_frame, 4, 4]
if self.use_flip:
flip_flag = self.pixel_transforms[1].get_flip_flag(self.sample_n_frames)
else:
flip_flag = torch.zeros(self.sample_n_frames, dtype=torch.bool, device=c2w.device)
plucker_embedding = ray_condition(intrinsics, c2w, self.sample_size[0], self.sample_size[1], device='cpu',
flip_flag=flip_flag)[0].permute(0, 3, 1, 2).contiguous()
return pixel_values, condition_image, plucker_embedding, video_caption, flip_flag, clip_name
def __len__(self):
return self.length
def __getitem__(self, idx):
while True:
try:
video, condition_image, plucker_embedding, video_caption, flip_flag, clip_name = self.get_batch(idx)
break
except Exception as e:
idx = random.randint(0, self.length - 1)
if self.use_flip:
video = self.pixel_transforms[0](video)
video = self.pixel_transforms[1](video, flip_flag)
for transform in self.pixel_transforms[2:]:
video = transform(video)
else:
for transform in self.pixel_transforms:
video = transform(video)
for transform in self.pixel_transforms:
condition_image = transform(condition_image)
if self.return_clip_name:
sample = dict(pixel_values=video, condition_image=condition_image, plucker_embedding=plucker_embedding, video_caption=video_caption, clip_name=clip_name)
else:
sample = dict(pixel_values=video, condition_image=condition_image, plucker_embedding=plucker_embedding, video_caption=video_caption)
return sample
|