Spaces:
Running
Running
| import os | |
| import torch | |
| import gradio as gr | |
| import torchaudio | |
| import time | |
| from datetime import datetime | |
| from tortoise.api import TextToSpeech | |
| from tortoise.utils.text import split_and_recombine_text | |
| from tortoise.utils.audio import load_audio, load_voice, load_voices | |
| VOICE_OPTIONS = [ | |
| "angie", | |
| "cond_latent_example", | |
| "deniro", | |
| "freeman", | |
| "halle", | |
| "lj", | |
| "myself", | |
| "pat2", | |
| "snakes", | |
| "tom", | |
| "train_daws", | |
| "train_dreams", | |
| "train_grace", | |
| "train_lescault", | |
| "weaver", | |
| "applejack", | |
| "daniel", | |
| "emma", | |
| "geralt", | |
| "jlaw", | |
| "mol", | |
| "pat", | |
| "rainbow", | |
| "tim_reynolds", | |
| "train_atkins", | |
| "train_dotrice", | |
| "train_empire", | |
| "train_kennard", | |
| "train_mouse", | |
| "william", | |
| "random", # special option for random voice | |
| "disabled", # special option for disabled voice | |
| ] | |
| def inference( | |
| text, | |
| script, | |
| name, | |
| voice, | |
| voice_b, | |
| preset, | |
| seed, | |
| regenerate, | |
| split_by_newline, | |
| ): | |
| if regenerate.strip() == "": | |
| regenerate = None | |
| if name.strip() == "": | |
| raise gr.Error("No name provided") | |
| if text is None or text.strip() == "": | |
| with open(script.name) as f: | |
| text = f.read() | |
| if text.strip() == "": | |
| raise gr.Error("Please provide either text or script file with content.") | |
| if split_by_newline == "Yes": | |
| texts = list(filter(lambda x: x.strip() != "", text.split("\n"))) | |
| else: | |
| texts = split_and_recombine_text(text) | |
| os.makedirs(os.path.join("longform", name), exist_ok=True) | |
| if regenerate is not None: | |
| regenerate = list(map(int, regenerate.split())) | |
| voices = [voice] | |
| if voice_b != "disabled": | |
| voices.append(voice_b) | |
| if len(voices) == 1: | |
| voice_samples, conditioning_latents = load_voice(voice) | |
| else: | |
| voice_samples, conditioning_latents = load_voices(voices) | |
| start_time = time.time() | |
| all_parts = [] | |
| for j, text in enumerate(texts): | |
| if regenerate is not None and j + 1 not in regenerate: | |
| all_parts.append( | |
| load_audio(os.path.join("longform", name, f"{j+1}.wav"), 24000) | |
| ) | |
| continue | |
| gen = tts.tts_with_preset( | |
| text, | |
| voice_samples=voice_samples, | |
| conditioning_latents=conditioning_latents, | |
| preset=preset, | |
| k=1, | |
| use_deterministic_seed=seed, | |
| ) | |
| gen = gen.squeeze(0).cpu() | |
| torchaudio.save(os.path.join("longform", name, f"{j+1}.wav"), gen, 24000) | |
| all_parts.append(gen) | |
| full_audio = torch.cat(all_parts, dim=-1) | |
| os.makedirs("outputs", exist_ok=True) | |
| torchaudio.save(os.path.join("outputs", f"{name}.wav"), full_audio, 24000) | |
| with open("Tortoise_TTS_Runs_Scripts.log", "a") as f: | |
| f.write( | |
| f"{datetime.now()} | Voice: {','.join(voices)} | Text: {text} | Quality: {preset} | Time Taken (s): {time.time()-start_time} | Seed: {seed}\n" | |
| ) | |
| output_texts = [f"({j+1}) {texts[j]}" for j in range(len(texts))] | |
| return ((24000, full_audio.squeeze().cpu().numpy()), "\n".join(output_texts)) | |
| def main(): | |
| text = gr.Textbox( | |
| lines=4, | |
| label="Text (Provide either text, or upload a newline separated text file below):", | |
| ) | |
| script = gr.File(label="Upload a text file") | |
| name = gr.Textbox( | |
| lines=1, label="Name of the output file / folder to store intermediate results:" | |
| ) | |
| preset = gr.Radio( | |
| ["ultra_fast", "fast", "standard", "high_quality"], | |
| value="fast", | |
| label="Preset mode (determines quality with tradeoff over speed):", | |
| type="value", | |
| ) | |
| voice = gr.Dropdown( | |
| VOICE_OPTIONS, value="angie", label="Select voice:", type="value" | |
| ) | |
| voice_b = gr.Dropdown( | |
| VOICE_OPTIONS, | |
| value="disabled", | |
| label="(Optional) Select second voice:", | |
| type="value", | |
| ) | |
| seed = gr.Number(value=0, precision=0, label="Seed (for reproducibility):") | |
| regenerate = gr.Textbox( | |
| lines=1, | |
| label="Comma-separated indices of clips to regenerate [starting from 1]", | |
| ) | |
| split_by_newline = gr.Radio( | |
| ["Yes", "No"], | |
| label="Split by newline (If [No], it will automatically try to find relevant splits):", | |
| type="value", | |
| value="No", | |
| ) | |
| output_audio = gr.Audio(label="Combined audio:") | |
| output_text = gr.Textbox(label="Split texts with indices:", lines=10) | |
| interface = gr.Interface( | |
| fn=inference, | |
| inputs=[ | |
| text, | |
| script, | |
| name, | |
| voice, | |
| voice_b, | |
| preset, | |
| seed, | |
| regenerate, | |
| split_by_newline, | |
| ], | |
| outputs=[output_audio, output_text], | |
| ) | |
| interface.launch(share=True) | |
| if __name__ == "__main__": | |
| tts = TextToSpeech(kv_cache=True, use_deepspeed=True, half=True) | |
| with open("Tortoise_TTS_Runs_Scripts.log", "a") as f: | |
| f.write( | |
| f"\n\n-------------------------Tortoise TTS Scripts Logs, {datetime.now()}-------------------------\n" | |
| ) | |
| main() |