Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,29 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
import tensorflow as tf
|
| 3 |
+
import numpy as np
|
| 4 |
+
|
| 5 |
+
# Load the Keras model
|
| 6 |
+
model = tf.keras.models.load_model("denis_mnist_cnn_model.h5")
|
| 7 |
+
|
| 8 |
+
# Define a function to preprocess input and make predictions
|
| 9 |
+
def predict(image):
|
| 10 |
+
# Preprocess the image (resize, normalize, etc.)
|
| 11 |
+
image = tf.image.resize(image, (224, 224)) # Example: Resize to 224x224
|
| 12 |
+
image = np.expand_dims(image, axis=0) # Add batch dimension
|
| 13 |
+
image = image / 255.0 # Normalize pixel values
|
| 14 |
+
|
| 15 |
+
# Perform prediction
|
| 16 |
+
prediction = model.predict(image)
|
| 17 |
+
return {"prediction": prediction.tolist()}
|
| 18 |
+
|
| 19 |
+
|
| 20 |
+
# Create a Gradio interface
|
| 21 |
+
interface = gr.Interface(
|
| 22 |
+
fn=predict,
|
| 23 |
+
inputs="image", # Text input for comma-separated values
|
| 24 |
+
outputs="json" # JSON output for prediction results
|
| 25 |
+
)
|
| 26 |
+
|
| 27 |
+
# Launch the Gradio app
|
| 28 |
+
if __name__ == "__main__":
|
| 29 |
+
interface.launch()
|