uninstall tensorflow
Browse files- models/face_classifier.py +0 -54
- requirements.txt +0 -0
models/face_classifier.py
CHANGED
@@ -1,16 +1,11 @@
|
|
1 |
from keras._tf_keras.keras.models import load_model
|
2 |
-
import keras
|
3 |
import warnings
|
4 |
import traceback
|
5 |
-
import cv2
|
6 |
import sys
|
7 |
-
import tensorflow as tf
|
8 |
import numpy as np
|
9 |
-
import exceptions
|
10 |
import os
|
11 |
from PIL import Image
|
12 |
from exceptions.NotFaceError import NotFaceError
|
13 |
-
from inference_sdk import InferenceHTTPClient
|
14 |
from transformers import pipeline, SegformerForSemanticSegmentation, SegformerImageProcessor, SegformerFeatureExtractor
|
15 |
|
16 |
def warning_with_traceback(message, category, filename, lineno, file=None, line=None):
|
@@ -19,55 +14,6 @@ def warning_with_traceback(message, category, filename, lineno, file=None, line=
|
|
19 |
log.write(warnings.formatwarning(message, category, filename, lineno, line))
|
20 |
|
21 |
warnings.showwarning = warning_with_traceback
|
22 |
-
|
23 |
-
|
24 |
-
@keras.saving.register_keras_serializable()
|
25 |
-
class CustomPreprocessingLayer(tf.keras.layers.Layer):
|
26 |
-
def __init__(self, input_shape, **kwargs):
|
27 |
-
self.input_shape = input_shape
|
28 |
-
super(CustomPreprocessingLayer, self).__init__(**kwargs)
|
29 |
-
|
30 |
-
def build(self, input_shape):
|
31 |
-
pass # No trainable weights to build
|
32 |
-
|
33 |
-
def call(self, image_matrix):
|
34 |
-
image = tf.convert_to_tensor(image_matrix, dtype=tf.int32)
|
35 |
-
image = tf.image.resize(image, [self.input_shape[0], self.input_shape[1]])
|
36 |
-
return image
|
37 |
-
def get_config(self):
|
38 |
-
config = super(CustomPreprocessingLayer, self).get_config()
|
39 |
-
config.update({'input_shape': self.input_shape})
|
40 |
-
return config
|
41 |
-
|
42 |
-
@classmethod
|
43 |
-
def from_config(cls, config):
|
44 |
-
return cls(**config)
|
45 |
-
|
46 |
-
class FaceClassifierModel:
|
47 |
-
def __init__(self, client:InferenceHTTPClient, image_size=224, batcb_size=16):
|
48 |
-
self.model = load_model("./models/efficientnet_face_detection.h5")
|
49 |
-
self.image_size = image_size
|
50 |
-
self.batch_size = batcb_size
|
51 |
-
self.seed = 42
|
52 |
-
self.client = client
|
53 |
-
|
54 |
-
async def classify(self, image_bytes: str, confidence_threshold=0.5):
|
55 |
-
tf.random.set_seed(self.seed)
|
56 |
-
nparr = np.frombuffer(image_bytes, np.uint8)
|
57 |
-
|
58 |
-
# Dekode array NumPy menjadi citra OpenCV
|
59 |
-
image = cv2.imdecode(nparr, cv2.IMREAD_COLOR)
|
60 |
-
image = cv2.resize(image, [self.image_size, self.image_size])
|
61 |
-
image_expanded = tf.expand_dims(image,axis=0)
|
62 |
-
image_batch = tf.data.Dataset.from_tensor_slices(image_expanded).batch(self.batch_size)
|
63 |
-
pred = self.model.predict(image_batch)
|
64 |
-
if pred[0][0] <= confidence_threshold:
|
65 |
-
raise NotFaceError("Ini bukan wajah")
|
66 |
-
|
67 |
-
# lanjut klasifikasi muka
|
68 |
-
result = await self.client.infer_async(image, model_id="skinclassification-kyxvj/1")
|
69 |
-
result["face_confidence"] = float(pred[0][0])
|
70 |
-
return result
|
71 |
|
72 |
|
73 |
class FaceSegmentationModel:
|
|
|
1 |
from keras._tf_keras.keras.models import load_model
|
|
|
2 |
import warnings
|
3 |
import traceback
|
|
|
4 |
import sys
|
|
|
5 |
import numpy as np
|
|
|
6 |
import os
|
7 |
from PIL import Image
|
8 |
from exceptions.NotFaceError import NotFaceError
|
|
|
9 |
from transformers import pipeline, SegformerForSemanticSegmentation, SegformerImageProcessor, SegformerFeatureExtractor
|
10 |
|
11 |
def warning_with_traceback(message, category, filename, lineno, file=None, line=None):
|
|
|
14 |
log.write(warnings.formatwarning(message, category, filename, lineno, line))
|
15 |
|
16 |
warnings.showwarning = warning_with_traceback
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
17 |
|
18 |
|
19 |
class FaceSegmentationModel:
|
requirements.txt
CHANGED
Binary files a/requirements.txt and b/requirements.txt differ
|
|