saadul commited on
Commit
17a32cc
·
1 Parent(s): 7b34ebf

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +17 -20
app.py CHANGED
@@ -1,27 +1,24 @@
1
  import streamlit as st
2
- from transformers import pipeline
3
 
4
- model_path = "citizenlab/twitter-xlm-roberta-base-sentiment-finetunned"
 
5
 
6
- st.set_page_config(page_title="Sentiment Analysis App")
 
 
7
 
 
 
8
 
9
- sentiment_classifier = pipeline("text-classification", model=model_path, tokenizer=model_path)
 
 
10
 
11
- st.title("Sentiment Analysis App")
 
 
 
 
12
 
13
- user_input = st.text_area("Enter a message:")
14
-
15
- if st.button("Analyze Sentiment"):
16
- if user_input:
17
- # Perform sentiment analysis
18
- results = sentiment_classifier(user_input)
19
- sentiment_label = results[0]["label"]
20
- sentiment_score = results[0]["score"]
21
-
22
- st.write(f"Sentiment: {sentiment_label}")
23
- st.write(f"Confidence Score: {sentiment_score:.2f}")
24
-
25
- # Run the Streamlit app
26
- if _name_ == "_main_":
27
- st.write("Enter a message and click 'Analyze Sentiment' to classify its sentiment.")
 
1
  import streamlit as st
2
+ import spacy
3
 
4
+ # Load spaCy NLP model for NER
5
+ nlp = spacy.load("en_core_web_sm")
6
 
7
+ # Streamlit app
8
+ def main():
9
+ st.title("Named Entity Recognition (NER) Demo")
10
 
11
+ # User input
12
+ text_input = st.text_area("Enter text:", "John Doe is the CEO of ABC Corp, and it is located in New York.")
13
 
14
+ # NER processing
15
+ if st.button("Extract Entities"):
16
+ doc = nlp(text_input)
17
 
18
+ # Display entities
19
+ entities = [(ent.text, ent.label_) for ent in doc.ents]
20
+ st.write("Named Entities:")
21
+ for entity, label in entities:
22
+ st.write(f"- {entity} ({label})")
23
 
24
+ if __name__ == "__main_