""" Code adapted from SelfMask: https://github.com/NoelShin/selfmask """ from typing import Optional, Union import numpy as np import torch def compute_iou( pred_mask: Union[np.ndarray, torch.Tensor], gt_mask: Union[np.ndarray, torch.Tensor], threshold: Optional[float] = 0.5, eps: float = 1e-7, ) -> Union[np.ndarray, torch.Tensor]: """ :param pred_mask: (B x H x W) or (H x W) :param gt_mask: (B x H x W) or (H x W), same shape with pred_mask :param threshold: a binarization threshold :param eps: a small value for computational stability :return: (B) or (1) """ assert pred_mask.shape == gt_mask.shape, f"{pred_mask.shape} != {gt_mask.shape}" # assert 0. <= pred_mask.to(torch.float32).min() and pred_mask.max().to(torch.float32) <= 1., f"{pred_mask.min(), pred_mask.max()}" if threshold is not None: pred_mask = pred_mask > threshold if isinstance(pred_mask, np.ndarray): intersection = np.logical_and(pred_mask, gt_mask).sum(axis=(-1, -2)) union = np.logical_or(pred_mask, gt_mask).sum(axis=(-1, -2)) ious = intersection / (union + eps) else: intersection = torch.logical_and(pred_mask, gt_mask).sum(dim=(-1, -2)) union = torch.logical_or(pred_mask, gt_mask).sum(dim=(-1, -2)) ious = (intersection / (union + eps)).cpu() return ious