Spaces:
Running
Running
File size: 9,385 Bytes
1803579 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 |
# Copyright 2022 - Valeo Comfort and Driving Assistance - valeo.ai
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import torch
import numpy as np
import torch.nn as nn
import torch.nn.functional as F
from tqdm import tqdm
from scipy import ndimage
from evaluation.metrics.average_meter import AverageMeter
from evaluation.metrics.f_measure import FMeasure
from evaluation.metrics.iou import compute_iou
from evaluation.metrics.mae import compute_mae
from evaluation.metrics.pixel_acc import compute_pixel_accuracy
from evaluation.metrics.s_measure import SMeasure
from misc import batch_apply_bilateral_solver
@torch.no_grad()
def write_metric_tf(writer, metrics, n_iter=-1, name=""):
writer.add_scalar(
f"Validation/{name}iou_pred",
metrics["ious"].avg,
n_iter,
)
writer.add_scalar(
f"Validation/{name}acc_pred",
metrics["pixel_accs"].avg,
n_iter,
)
writer.add_scalar(
f"Validation/{name}f_max",
metrics["f_maxs"].avg,
n_iter,
)
@torch.no_grad()
def eval_batch(batch_gt_masks, batch_pred_masks, metrics_res={}, reset=False):
"""
Evaluation code adapted from SelfMask: https://github.com/NoelShin/selfmask
"""
f_values = {}
# Keep track of f_values for each threshold
for i in range(255): # should equal n_bins in metrics/f_measure.py
f_values[i] = AverageMeter()
if metrics_res == {}:
metrics_res["f_scores"] = AverageMeter()
metrics_res["f_maxs"] = AverageMeter()
metrics_res["f_maxs_fixed"] = AverageMeter()
metrics_res["f_means"] = AverageMeter()
metrics_res["maes"] = AverageMeter()
metrics_res["ious"] = AverageMeter()
metrics_res["pixel_accs"] = AverageMeter()
metrics_res["s_measures"] = AverageMeter()
if reset:
metrics_res["f_scores"].reset()
metrics_res["f_maxs"].reset()
metrics_res["f_maxs_fixed"].reset()
metrics_res["f_means"].reset()
metrics_res["maes"].reset()
metrics_res["ious"].reset()
metrics_res["pixel_accs"].reset()
metrics_res["s_measures"].reset()
# iterate over batch dimension
for _, (pred_mask, gt_mask) in enumerate(zip(batch_pred_masks, batch_gt_masks)):
assert pred_mask.shape == gt_mask.shape, f"{pred_mask.shape} != {gt_mask.shape}"
assert len(pred_mask.shape) == len(gt_mask.shape) == 2
# Compute
# Binarize at 0.5 for IoU and pixel accuracy
binary_pred = (pred_mask > 0.5).float().squeeze()
iou = compute_iou(binary_pred, gt_mask)
f_measures = FMeasure()(pred_mask, gt_mask) # soft mask for F measure
mae = compute_mae(binary_pred, gt_mask)
pixel_acc = compute_pixel_accuracy(binary_pred, gt_mask)
# Update
metrics_res["ious"].update(val=iou.numpy(), n=1)
metrics_res["f_scores"].update(val=f_measures["f_measure"].numpy(), n=1)
metrics_res["f_maxs"].update(val=f_measures["f_max"].numpy(), n=1)
metrics_res["f_means"].update(val=f_measures["f_mean"].numpy(), n=1)
metrics_res["s_measures"].update(
val=SMeasure()(pred_mask=pred_mask, gt_mask=gt_mask.to(torch.float32)), n=1
)
metrics_res["maes"].update(val=mae.numpy(), n=1)
metrics_res["pixel_accs"].update(val=pixel_acc.numpy(), n=1)
# Keep track of f_values for each threshold
all_f = f_measures["all_f"].numpy()
for k, v in f_values.items():
v.update(val=all_f[k], n=1)
# Then compute the max for the f_max_fixed
metrics_res["f_maxs_fixed"].update(
val=np.max([v.avg for v in f_values.values()]), n=1
)
results = {}
# F-measure, F-max, F-mean, MAE, S-measure, IoU, pixel acc.
results["f_measure"] = metrics_res["f_scores"].avg
results["f_max"] = metrics_res["f_maxs"].avg
results["f_maxs_fixed"] = metrics_res["f_maxs_fixed"].avg
results["f_mean"] = metrics_res["f_means"].avg
results["s_measure"] = metrics_res["s_measures"].avg
results["mae"] = metrics_res["maes"].avg
results["iou"] = float(iou.numpy())
results["pixel_acc"] = metrics_res["pixel_accs"].avg
return results, metrics_res
def evaluate_saliency(
dataset,
model,
writer=None,
batch_size=1,
n_iter=-1,
apply_bilateral=False,
im_fullsize=True,
method="pred", # can also be "bkg",
apply_weights: bool = True,
evaluation_mode: str = "single", # choices are ["single", "multi"]
):
if im_fullsize:
# Change transformation
dataset.fullimg_mode()
batch_size = 1
valloader = torch.utils.data.DataLoader(
dataset, batch_size=batch_size, shuffle=False, num_workers=2
)
sigmoid = nn.Sigmoid()
metrics_res = {}
metrics_res_bs = {}
valbar = tqdm(enumerate(valloader, 0), leave=None)
for i, data in valbar:
inputs, _, _, _, _, gt_labels, _ = data
inputs = inputs.to("cuda")
gt_labels = gt_labels.to("cuda").float()
# Forward step
with torch.no_grad():
preds = model(inputs, for_eval=True)
h, w = gt_labels.shape[-2:]
preds_up = F.interpolate(
preds,
scale_factor=model.vit_patch_size,
mode="bilinear",
align_corners=False,
)[..., :h, :w]
soft_preds = sigmoid(preds_up.detach()).squeeze(0)
preds_up = (sigmoid(preds_up.detach()) > 0.5).squeeze(0).float()
reset = True if i == 0 else False
if evaluation_mode == "single":
labeled, nr_objects = ndimage.label(preds_up.squeeze().cpu().numpy())
if nr_objects == 0:
preds_up_one_cc = preds_up.squeeze()
print("nr_objects == 0")
else:
nb_pixel = [np.sum(labeled == i) for i in range(nr_objects + 1)]
pixel_order = np.argsort(nb_pixel)
cc = [torch.Tensor(labeled == i) for i in pixel_order]
cc = torch.stack(cc).cuda()
# Find CC set as background, here not necessarily the biggest
cc_background = (
(
(
(~(preds_up[None, :, :, :].bool())).float()
+ cc[:, None, :, :].cuda()
)
> 1
)
.sum(-1)
.sum(-1)
.argmax()
)
pixel_order = np.delete(pixel_order, int(cc_background.cpu().numpy()))
preds_up_one_cc = torch.Tensor(labeled == pixel_order[-1]).cuda()
_, metrics_res = eval_batch(
gt_labels,
preds_up_one_cc.unsqueeze(0),
metrics_res=metrics_res,
reset=reset,
)
elif evaluation_mode == "multi":
# Eval without bilateral solver
_, metrics_res = eval_batch(
gt_labels,
soft_preds.unsqueeze(0) if len(soft_preds.shape) == 2 else soft_preds,
metrics_res=metrics_res,
reset=reset,
) # soft preds needed for F beta measure
# Apply bilateral solver
preds_bs = None
if apply_bilateral:
get_all_cc = True if evaluation_mode == "multi" else False
preds_bs, _ = batch_apply_bilateral_solver(
data, preds_up.detach(), get_all_cc=get_all_cc
)
_, metrics_res_bs = eval_batch(
gt_labels,
preds_bs[None, :, :].float(),
metrics_res=metrics_res_bs,
reset=reset,
)
bar_str = (
f"{dataset.name} | {evaluation_mode} mode | "
f"F-max {metrics_res['f_maxs'].avg:.3f} "
f"IoU {metrics_res['ious'].avg:.3f}, "
f"PA {metrics_res['pixel_accs'].avg:.3f}"
)
if apply_bilateral:
bar_str += (
f" | with bilateral solver: "
f"F-max {metrics_res_bs['f_maxs'].avg:.3f}, "
f"IoU {metrics_res_bs['ious'].avg:.3f}, "
f"PA. {metrics_res_bs['pixel_accs'].avg:.3f}"
)
valbar.set_description(bar_str)
# Writing in tensorboard
if writer is not None:
write_metric_tf(
writer,
metrics_res,
n_iter=n_iter,
name=f"{dataset.name}_{evaluation_mode}_",
)
if apply_bilateral:
write_metric_tf(
writer,
metrics_res_bs,
n_iter=n_iter,
name=f"{dataset.name}_{evaluation_mode}-BS_",
)
# Go back to original transformation
if im_fullsize:
dataset.training_mode()
|