File size: 4,088 Bytes
1803579
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
# code borrowed from https://github.com/Hanqer/Evaluate-SOD/blob/master/evaluator.py
import numpy as np
import torch


class SMeasure:
    def __init__(self, alpha: float = 0.5):
        self.alpha: float = alpha
        self.cuda: bool = True

    def _centroid(self, gt):
        rows, cols = gt.size()[-2:]
        gt = gt.view(rows, cols)
        if gt.sum() == 0:
            if self.cuda:
                X = torch.eye(1).cuda() * round(cols / 2)
                Y = torch.eye(1).cuda() * round(rows / 2)
            else:
                X = torch.eye(1) * round(cols / 2)
                Y = torch.eye(1) * round(rows / 2)
        else:
            total = gt.sum()
            if self.cuda:
                i = torch.from_numpy(np.arange(0, cols)).cuda().float()
                j = torch.from_numpy(np.arange(0, rows)).cuda().float()
            else:
                i = torch.from_numpy(np.arange(0, cols)).float()
                j = torch.from_numpy(np.arange(0, rows)).float()
            X = torch.round((gt.sum(dim=0) * i).sum() / total)
            Y = torch.round((gt.sum(dim=1) * j).sum() / total)
        return X.long(), Y.long()

    def _ssim(self, pred, gt):
        gt = gt.float()
        h, w = pred.size()[-2:]
        N = h * w
        x = pred.mean()
        y = gt.mean()
        sigma_x2 = ((pred - x) * (pred - x)).sum() / (N - 1 + 1e-20)
        sigma_y2 = ((gt - y) * (gt - y)).sum() / (N - 1 + 1e-20)
        sigma_xy = ((pred - x) * (gt - y)).sum() / (N - 1 + 1e-20)

        aplha = 4 * x * y * sigma_xy
        beta = (x * x + y * y) * (sigma_x2 + sigma_y2)

        if aplha != 0:
            Q = aplha / (beta + 1e-20)
        elif aplha == 0 and beta == 0:
            Q = 1.0
        else:
            Q = 0
        return Q

    def _object(self, pred, gt):
        temp = pred[gt == 1]
        x = temp.mean()
        sigma_x = temp.std()
        score = 2.0 * x / (x * x + 1.0 + sigma_x + 1e-20)

        return score

    def _s_object(self, pred, gt):
        fg = torch.where(gt == 0, torch.zeros_like(pred), pred)
        bg = torch.where(gt == 1, torch.zeros_like(pred), 1 - pred)
        o_fg = self._object(fg, gt)
        o_bg = self._object(bg, 1 - gt)
        u = gt.mean()
        Q = u * o_fg + (1 - u) * o_bg
        return Q

    def _divide_gt(self, gt, X, Y):
        h, w = gt.size()[-2:]
        area = h * w
        gt = gt.view(h, w)
        LT = gt[:Y, :X]
        RT = gt[:Y, X:w]
        LB = gt[Y:h, :X]
        RB = gt[Y:h, X:w]
        X = X.float()
        Y = Y.float()
        w1 = X * Y / area
        w2 = (w - X) * Y / area
        w3 = X * (h - Y) / area
        w4 = 1 - w1 - w2 - w3
        return LT, RT, LB, RB, w1, w2, w3, w4

    def _divide_prediction(self, pred, X, Y):
        h, w = pred.size()[-2:]
        pred = pred.view(h, w)
        LT = pred[:Y, :X]
        RT = pred[:Y, X:w]
        LB = pred[Y:h, :X]
        RB = pred[Y:h, X:w]
        return LT, RT, LB, RB

    def _s_region(self, pred, gt):
        X, Y = self._centroid(gt)
        gt1, gt2, gt3, gt4, w1, w2, w3, w4 = self._divide_gt(gt, X, Y)
        p1, p2, p3, p4 = self._divide_prediction(pred, X, Y)
        Q1 = self._ssim(p1, gt1)
        Q2 = self._ssim(p2, gt2)
        Q3 = self._ssim(p3, gt3)
        Q4 = self._ssim(p4, gt4)
        Q = w1 * Q1 + w2 * Q2 + w3 * Q3 + w4 * Q4
        # print(Q)
        return Q

    def __call__(self, pred_mask: torch.Tensor, gt_mask: torch.Tensor):
        assert pred_mask.shape == gt_mask.shape
        y = gt_mask.mean()
        if y == 0:
            x = pred_mask.mean()
            Q = 1.0 - x
        elif y == 1:
            x = pred_mask.mean()
            Q = x
        else:
            gt_mask[gt_mask >= 0.5] = 1
            gt_mask[gt_mask < 0.5] = 0
            # print(self._S_object(pred, gt), self._S_region(pred, gt))
            Q = self.alpha * self._s_object(pred_mask, gt_mask) + (
                1 - self.alpha
            ) * self._s_region(pred_mask, gt_mask)
            if Q.item() < 0:
                Q = torch.FloatTensor([0.0])
        return Q.item()