Spaces:
Running
Running
File size: 4,619 Bytes
1803579 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 |
# Code for Peekaboo
# Author: Hasib Zunair
# Modified from https://github.com/valeoai/FOUND, see license below.
# Copyright 2022 - Valeo Comfort and Driving Assistance - Oriane Siméoni @ valeo.ai
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Visualize outputs and save masks of both model predictions and ground truths.
Usage:
python ./utils/visualize_outputs.py --model-weights outputs/msl_a1.5_b1_g1_reg4-MSL-DUTS-TR-vit_small8/decoder_weights_niter500.pt --img-folder ./datasets_local/ECSSD/images/ --output-dir outputs/visualizations/msl_a1.5_b1_g1_reg4-MSL-DUTS-TR-vit_small8_ECSSD
"""
import os
import torch
import argparse
import torch.nn as nn
import torch.nn.functional as F
import matplotlib.pyplot as plt
import cv2
import numpy as np
from PIL import Image
from model import PeekabooModel
from misc import load_config
from torchvision import transforms as T
NORMALIZE = T.Normalize((0.485, 0.456, 0.406), (0.229, 0.224, 0.225))
if __name__ == "__main__":
parser = argparse.ArgumentParser(
description="Evaluation of Peekaboo",
formatter_class=argparse.ArgumentDefaultsHelpFormatter,
)
parser.add_argument(
"--img-folder", type=str, default="data/examples/", help="Image folder path."
)
parser.add_argument(
"--model-weights",
type=str,
default="data/weights/decoder_weights.pt",
)
parser.add_argument(
"--config",
type=str,
default="configs/msl_DUTS-TR.yaml",
)
parser.add_argument(
"--output-dir",
type=str,
default="outputs",
)
args = parser.parse_args()
# Saving dir
if not os.path.exists(args.output_dir):
os.makedirs(args.output_dir)
# Configuration
config, _ = load_config(args.config)
# ------------------------------------
# Load the model
model = PeekabooModel(
vit_model=config.model["pre_training"],
vit_arch=config.model["arch"],
vit_patch_size=config.model["patch_size"],
enc_type_feats=config.peekaboo["feats"],
)
# Load weights
model.decoder_load_weights(args.model_weights)
model.eval()
print(f"Model {args.model_weights} loaded correctly.")
img_paths = sorted(
[os.path.join(args.img_folder, path) for path in os.listdir(args.img_folder)]
)
dir = "./datasets_local/DUT-OMRON/pixelwiseGT-new-PNG/"
mask_paths = sorted([os.path.join(dir, path) for path in os.listdir(dir)])
for img_path, mask_path in zip(img_paths, mask_paths):
# Load the image
with open(img_path, "rb") as f:
img = Image.open(f)
img = img.convert("RGB")
img_np = np.array(img)
t = T.Compose([T.ToTensor(), NORMALIZE])
img_t = t(img)[None, :, :, :]
inputs = img_t.to("cuda")
# Load mask
with open(mask_path, "rb") as f:
mask = Image.open(f).convert("P")
mask_np = np.array(mask)
mask_np = (mask_np / np.max(mask_np) * 255).astype(np.uint8)
mask_np_3d = np.stack([mask_np, mask_np, mask_np], axis=-1)
# Forward step
with torch.no_grad():
preds = model(inputs, for_eval=True)
sigmoid = nn.Sigmoid()
h, w = img_t.shape[-2:]
preds_up = F.interpolate(
preds,
scale_factor=model.vit_patch_size,
mode="bilinear",
align_corners=False,
)[..., :h, :w]
preds_up = (sigmoid(preds_up.detach()) > 0.5).squeeze(0).float()
preds_up_np = preds_up.cpu().squeeze().numpy()
preds_up_np = (preds_up_np / np.max(preds_up_np) * 255).astype(np.uint8)
preds_up_np_3d = np.stack([preds_up_np, preds_up_np, preds_up_np], axis=-1)
combined_image = cv2.addWeighted(img_np, 0.5, mask_np_3d, 0.5, 0)
combined_image = cv2.cvtColor(combined_image, cv2.COLOR_BGR2RGB)
save_path = os.path.join(args.output_dir, img_path.split("/")[-1])
cv2.imwrite(save_path, combined_image)
print(f"Saved image in {save_path} with shape {combined_image.shape}")
|