File size: 4,619 Bytes
1803579
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
# Code for Peekaboo
# Author: Hasib Zunair
# Modified from https://github.com/valeoai/FOUND, see license below.

# Copyright 2022 - Valeo Comfort and Driving Assistance - Oriane Siméoni @ valeo.ai
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#      http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""Visualize outputs and save masks of both model predictions and ground truths.
Usage:
python ./utils/visualize_outputs.py --model-weights outputs/msl_a1.5_b1_g1_reg4-MSL-DUTS-TR-vit_small8/decoder_weights_niter500.pt --img-folder ./datasets_local/ECSSD/images/ --output-dir outputs/visualizations/msl_a1.5_b1_g1_reg4-MSL-DUTS-TR-vit_small8_ECSSD
"""

import os
import torch
import argparse
import torch.nn as nn
import torch.nn.functional as F
import matplotlib.pyplot as plt
import cv2
import numpy as np

from PIL import Image
from model import PeekabooModel
from misc import load_config
from torchvision import transforms as T

NORMALIZE = T.Normalize((0.485, 0.456, 0.406), (0.229, 0.224, 0.225))

if __name__ == "__main__":
    parser = argparse.ArgumentParser(
        description="Evaluation of Peekaboo",
        formatter_class=argparse.ArgumentDefaultsHelpFormatter,
    )

    parser.add_argument(
        "--img-folder", type=str, default="data/examples/", help="Image folder path."
    )
    parser.add_argument(
        "--model-weights",
        type=str,
        default="data/weights/decoder_weights.pt",
    )
    parser.add_argument(
        "--config",
        type=str,
        default="configs/msl_DUTS-TR.yaml",
    )
    parser.add_argument(
        "--output-dir",
        type=str,
        default="outputs",
    )
    args = parser.parse_args()

    # Saving dir
    if not os.path.exists(args.output_dir):
        os.makedirs(args.output_dir)

    # Configuration
    config, _ = load_config(args.config)

    # ------------------------------------
    # Load the model
    model = PeekabooModel(
        vit_model=config.model["pre_training"],
        vit_arch=config.model["arch"],
        vit_patch_size=config.model["patch_size"],
        enc_type_feats=config.peekaboo["feats"],
    )
    # Load weights
    model.decoder_load_weights(args.model_weights)
    model.eval()
    print(f"Model {args.model_weights} loaded correctly.")

    img_paths = sorted(
        [os.path.join(args.img_folder, path) for path in os.listdir(args.img_folder)]
    )

    dir = "./datasets_local/DUT-OMRON/pixelwiseGT-new-PNG/"
    mask_paths = sorted([os.path.join(dir, path) for path in os.listdir(dir)])

    for img_path, mask_path in zip(img_paths, mask_paths):
        # Load the image
        with open(img_path, "rb") as f:
            img = Image.open(f)
            img = img.convert("RGB")
            img_np = np.array(img)

            t = T.Compose([T.ToTensor(), NORMALIZE])
            img_t = t(img)[None, :, :, :]
            inputs = img_t.to("cuda")

        # Load mask
        with open(mask_path, "rb") as f:
            mask = Image.open(f).convert("P")
            mask_np = np.array(mask)
            mask_np = (mask_np / np.max(mask_np) * 255).astype(np.uint8)
            mask_np_3d = np.stack([mask_np, mask_np, mask_np], axis=-1)

        # Forward step
        with torch.no_grad():
            preds = model(inputs, for_eval=True)

        sigmoid = nn.Sigmoid()
        h, w = img_t.shape[-2:]
        preds_up = F.interpolate(
            preds,
            scale_factor=model.vit_patch_size,
            mode="bilinear",
            align_corners=False,
        )[..., :h, :w]
        preds_up = (sigmoid(preds_up.detach()) > 0.5).squeeze(0).float()

        preds_up_np = preds_up.cpu().squeeze().numpy()
        preds_up_np = (preds_up_np / np.max(preds_up_np) * 255).astype(np.uint8)
        preds_up_np_3d = np.stack([preds_up_np, preds_up_np, preds_up_np], axis=-1)

        combined_image = cv2.addWeighted(img_np, 0.5, mask_np_3d, 0.5, 0)
        combined_image = cv2.cvtColor(combined_image, cv2.COLOR_BGR2RGB)

        save_path = os.path.join(args.output_dir, img_path.split("/")[-1])
        cv2.imwrite(save_path, combined_image)

        print(f"Saved image in {save_path} with shape {combined_image.shape}")