hasibzunair commited on
Commit
d260a1c
·
1 Parent(s): c72d473

update app.py

Browse files
Files changed (1) hide show
  1. app.py +6 -3
app.py CHANGED
@@ -17,6 +17,7 @@ model = None
17
  model = load_model("MelaNet.h5", compile=False)
18
  model.summary()
19
 
 
20
  examples = ["benign.png", "malignant.png"]
21
  labels = ["Benign", "Malignant"]
22
 
@@ -35,6 +36,7 @@ def preprocess_image(img_array):
35
  return img_array
36
 
37
 
 
38
  def inference(img):
39
  img = preprocess_image(img)
40
  img = np.expand_dims(img, 0)
@@ -44,13 +46,14 @@ def inference(img):
44
  labels_probs = {labels[i]: float(preds[i]) for i, _ in enumerate(labels)}
45
  return labels_probs
46
 
47
-
 
48
  article = "<p style='text-align: center'><a href='https://arxiv.org/abs/2004.06824' target='_blank'>Melanoma Detection using Adversarial Training and Deep Transfer Learning</a> | <a href='https://github.com/hasibzunair/adversarial-lesions' target='_blank'>Github</a></p>"
49
 
50
  gr.Interface(
51
  fn=inference,
52
- title="Melanoma Detection Demo",
53
- description = "This model predicts if the given image has benign or malignant symptoms. To use it, simply upload a skin lesion image, or click one of the examples to load them. Read more at the links below",
54
  article=article,
55
  inputs="image",
56
  outputs="label",
 
17
  model = load_model("MelaNet.h5", compile=False)
18
  model.summary()
19
 
20
+ # Path to examples and class label list
21
  examples = ["benign.png", "malignant.png"]
22
  labels = ["Benign", "Malignant"]
23
 
 
36
  return img_array
37
 
38
 
39
+ # Main inference function
40
  def inference(img):
41
  img = preprocess_image(img)
42
  img = np.expand_dims(img, 0)
 
46
  labels_probs = {labels[i]: float(preds[i]) for i, _ in enumerate(labels)}
47
  return labels_probs
48
 
49
+ title = "Melanoma Detection Demo"
50
+ description = "This model predicts if the given image has benign or malignant symptoms. To use it, simply upload a skin lesion image, or click one of the examples to load them. Read more at the links below"
51
  article = "<p style='text-align: center'><a href='https://arxiv.org/abs/2004.06824' target='_blank'>Melanoma Detection using Adversarial Training and Deep Transfer Learning</a> | <a href='https://github.com/hasibzunair/adversarial-lesions' target='_blank'>Github</a></p>"
52
 
53
  gr.Interface(
54
  fn=inference,
55
+ title=title,
56
+ description = description,
57
  article=article,
58
  inputs="image",
59
  outputs="label",