hasibzunair's picture
add files
11ca577
raw
history blame
1.51 kB
import os
os.environ['CUDA_VISIBLE_DEVICES'] = '-1'
import tensorflow as tf
import keras.backend.tensorflow_backend as tb
tb._SYMBOLIC_SCOPE.value = True
import numpy as np
import gradio as gr
import cv2
from PIL import Image
from tensorflow.keras.models import load_model
# Get model weights
os.system("wget https://github.com/hasibzunair/adversarial-lesions/releases/latest/download/MelaNet.h5")
# Load model
model = None
model = load_model("MelaNet.h5", compile=False)
model.summary()
examples = ["benign.jpg", "malignant.jpg"]
labels = ["Benign", "Malignant"]
# Helpers
def preprocess_image(img_array):
# Normalize to [0,1]
img_array = img_array.astype('float32')
img_array /= 255
# Check that images are 2D arrays
if len(img_array.shape) > 2:
img_array = img_array[:, :, 0]
# Convert to 3-channel
img_array = np.stack((img_array, img_array, img_array), axis=-1)
# Convert to array
img_array = cv2.resize(img_array, (256, 256))
return img_array
def inference(img):
img = preprocess_image(img)
img = np.expand_dims(img, 0)
preds = model.predict(img)
# Predict
preds = model.predict(img)[0]
labels_probs = {labels[i]: float(preds[i]) for i, _ in enumerate(labels)}
return labels_probs
gr.Interface(
fn=inference,
title="Benign or Malignant",
description = "Predict if this image has benign or malignant symptoms",
inputs="image",
outputs="label",
examples=examples,
).launch(debug=True, enable_queue=True)