Spaces:
				
			
			
	
			
			
		Runtime error
		
	
	
	
			
			
	
	
	
	
		
		
		Runtime error
		
	Commit 
							
							路
						
						f9a5b44
	
1
								Parent(s):
							
							f4d11d9
								
cleanup
Browse files
    	
        README.md
    CHANGED
    
    | @@ -1,16 +1,5 @@ | |
| 1 | 
            -
             | 
| 2 | 
            -
             | 
| 3 | 
            -
            emoji: 馃殌
         | 
| 4 | 
            -
            colorFrom: indigo
         | 
| 5 | 
            -
            colorTo: pink
         | 
| 6 | 
            -
            sdk: gradio
         | 
| 7 | 
            -
            sdk_version: 2.9.4
         | 
| 8 | 
            -
            app_file: app.py
         | 
| 9 | 
            -
            pinned: false
         | 
| 10 | 
            -
            license: afl-3.0
         | 
| 11 | 
            -
            ---
         | 
| 12 | 
            -
             | 
| 13 | 
            -
            Check out the configuration reference at https://huggingface.co/docs/hub/spaces#reference
         | 
| 14 |  | 
| 15 | 
             
            ### References
         | 
| 16 | 
             
            * https://huggingface.co/docs/hub/spaces#manage-app-with-github-actions
         | 
|  | |
| 1 | 
            +
            # Image Recognition Demo
         | 
| 2 | 
            +
            This is a simple demo of an image recognition system built with Gradio and served on HuggingFace Spaces.
         | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
| 3 |  | 
| 4 | 
             
            ### References
         | 
| 5 | 
             
            * https://huggingface.co/docs/hub/spaces#manage-app-with-github-actions
         | 
    	
        app.py
    CHANGED
    
    | @@ -1,8 +1,9 @@ | |
|  | |
| 1 | 
             
            import torch
         | 
|  | |
|  | |
| 2 | 
             
            from PIL import Image
         | 
| 3 | 
             
            from torchvision import transforms
         | 
| 4 | 
            -
            import gradio as gr
         | 
| 5 | 
            -
            import os
         | 
| 6 |  | 
| 7 |  | 
| 8 | 
             
            """
         | 
| @@ -11,14 +12,17 @@ https://huggingface.co/spaces/pytorch/ResNet/tree/main | |
| 11 | 
             
            https://www.gradio.app/image_classification_in_pytorch/
         | 
| 12 | 
             
            """
         | 
| 13 |  | 
|  | |
| 14 | 
             
            os.system("wget https://raw.githubusercontent.com/pytorch/hub/master/imagenet_classes.txt")
         | 
| 15 |  | 
|  | |
| 16 | 
             
            model = torch.hub.load('pytorch/vision:v0.10.0', 'resnet18', pretrained=True)
         | 
| 17 | 
             
            model.eval()
         | 
| 18 |  | 
| 19 | 
             
            # Download an example image from the pytorch website
         | 
| 20 | 
             
            torch.hub.download_url_to_file("https://github.com/pytorch/hub/raw/master/images/dog.jpg", "dog.jpg")
         | 
| 21 |  | 
|  | |
| 22 | 
             
            def inference(input_image):
         | 
| 23 | 
             
                preprocess = transforms.Compose([
         | 
| 24 | 
             
                    transforms.Resize(256),
         | 
| @@ -29,7 +33,7 @@ def inference(input_image): | |
| 29 | 
             
                input_tensor = preprocess(input_image)
         | 
| 30 | 
             
                input_batch = input_tensor.unsqueeze(0) # create a mini-batch as expected by the model
         | 
| 31 |  | 
| 32 | 
            -
                #  | 
| 33 | 
             
                if torch.cuda.is_available():
         | 
| 34 | 
             
                    input_batch = input_batch.to('cuda')
         | 
| 35 | 
             
                    model.to('cuda')
         | 
| @@ -49,13 +53,16 @@ def inference(input_image): | |
| 49 | 
             
                    result[categories[top5_catid[i]]] = top5_prob[i].item()
         | 
| 50 | 
             
                return result
         | 
| 51 |  | 
|  | |
| 52 | 
             
            inputs = gr.inputs.Image(type='pil')
         | 
| 53 | 
             
            outputs = gr.outputs.Label(type="confidences",num_top_classes=5)
         | 
| 54 |  | 
|  | |
| 55 | 
             
            title = "Image Recognition Demo"
         | 
| 56 | 
             
            description = "This is a prototype application which demonstrates how artifical intelligence based systems can recognize what object(s) is present in an image. This fundamental task in computer vision known as `Image Classification` has applications stretching from autonomous vehicles to medical imaging. To use it, simply upload your image, or click one of the examples images to load them, which I took at Montr茅al Biod么me! Read more at the links below."
         | 
| 57 | 
             
            article = "<p style='text-align: center'><a href='https://arxiv.org/abs/1512.03385' target='_blank'>Deep Residual Learning for Image Recognition</a> | <a href='https://github.com/pytorch/vision/blob/main/torchvision/models/resnet.py' target='_blank'>Github Repo</a></p>"
         | 
| 58 |  | 
|  | |
| 59 | 
             
            gr.Interface(inference, 
         | 
| 60 | 
             
                        inputs, 
         | 
| 61 | 
             
                        outputs, 
         | 
|  | |
| 1 | 
            +
            import os
         | 
| 2 | 
             
            import torch
         | 
| 3 | 
            +
            import gradio as gr
         | 
| 4 | 
            +
             | 
| 5 | 
             
            from PIL import Image
         | 
| 6 | 
             
            from torchvision import transforms
         | 
|  | |
|  | |
| 7 |  | 
| 8 |  | 
| 9 | 
             
            """
         | 
|  | |
| 12 | 
             
            https://www.gradio.app/image_classification_in_pytorch/
         | 
| 13 | 
             
            """
         | 
| 14 |  | 
| 15 | 
            +
            # Get classes list
         | 
| 16 | 
             
            os.system("wget https://raw.githubusercontent.com/pytorch/hub/master/imagenet_classes.txt")
         | 
| 17 |  | 
| 18 | 
            +
            # Load PyTorch model
         | 
| 19 | 
             
            model = torch.hub.load('pytorch/vision:v0.10.0', 'resnet18', pretrained=True)
         | 
| 20 | 
             
            model.eval()
         | 
| 21 |  | 
| 22 | 
             
            # Download an example image from the pytorch website
         | 
| 23 | 
             
            torch.hub.download_url_to_file("https://github.com/pytorch/hub/raw/master/images/dog.jpg", "dog.jpg")
         | 
| 24 |  | 
| 25 | 
            +
            # Inference!
         | 
| 26 | 
             
            def inference(input_image):
         | 
| 27 | 
             
                preprocess = transforms.Compose([
         | 
| 28 | 
             
                    transforms.Resize(256),
         | 
|  | |
| 33 | 
             
                input_tensor = preprocess(input_image)
         | 
| 34 | 
             
                input_batch = input_tensor.unsqueeze(0) # create a mini-batch as expected by the model
         | 
| 35 |  | 
| 36 | 
            +
                # Move the input and model to GPU for speed if available
         | 
| 37 | 
             
                if torch.cuda.is_available():
         | 
| 38 | 
             
                    input_batch = input_batch.to('cuda')
         | 
| 39 | 
             
                    model.to('cuda')
         | 
|  | |
| 53 | 
             
                    result[categories[top5_catid[i]]] = top5_prob[i].item()
         | 
| 54 | 
             
                return result
         | 
| 55 |  | 
| 56 | 
            +
            # Define ins outs placeholders
         | 
| 57 | 
             
            inputs = gr.inputs.Image(type='pil')
         | 
| 58 | 
             
            outputs = gr.outputs.Label(type="confidences",num_top_classes=5)
         | 
| 59 |  | 
| 60 | 
            +
            # Define style
         | 
| 61 | 
             
            title = "Image Recognition Demo"
         | 
| 62 | 
             
            description = "This is a prototype application which demonstrates how artifical intelligence based systems can recognize what object(s) is present in an image. This fundamental task in computer vision known as `Image Classification` has applications stretching from autonomous vehicles to medical imaging. To use it, simply upload your image, or click one of the examples images to load them, which I took at Montr茅al Biod么me! Read more at the links below."
         | 
| 63 | 
             
            article = "<p style='text-align: center'><a href='https://arxiv.org/abs/1512.03385' target='_blank'>Deep Residual Learning for Image Recognition</a> | <a href='https://github.com/pytorch/vision/blob/main/torchvision/models/resnet.py' target='_blank'>Github Repo</a></p>"
         | 
| 64 |  | 
| 65 | 
            +
            # Run inference
         | 
| 66 | 
             
            gr.Interface(inference, 
         | 
| 67 | 
             
                        inputs, 
         | 
| 68 | 
             
                        outputs, 
         | 
