hasibzunair commited on
Commit
df67541
·
1 Parent(s): 7c71c15

update app.py

Browse files
Files changed (1) hide show
  1. app.py +1 -35
app.py CHANGED
@@ -52,7 +52,7 @@ def inference(input_image):
52
  inputs = gr.inputs.Image(type='pil')
53
  outputs = gr.outputs.Label(type="confidences",num_top_classes=5)
54
 
55
- title = "An Image Classification Demo with ResNet"
56
  description = "Demo of a ResNet image classifier trained on the ImageNet dataset. To use it, simply upload your image, or click one of the examples to load them. Read more at the links below."
57
  article = "<p style='text-align: center'><a href='https://arxiv.org/abs/1512.03385' target='_blank'>Deep Residual Learning for Image Recognition</a> | <a href='https://github.com/pytorch/vision/blob/main/torchvision/models/resnet.py' target='_blank'>Github Repo</a></p>"
58
 
@@ -65,37 +65,3 @@ gr.Interface(inference,
65
  article=article,
66
  analytics_enabled=False).launch()
67
 
68
- # import torch
69
- # import requests
70
- # import gradio as gr
71
-
72
- # from torchvision import transforms
73
-
74
- # """
75
- # Built following https://www.gradio.app/image_classification_in_pytorch/.
76
- # """
77
-
78
- # # Load model
79
- # model = torch.hub.load('pytorch/vision:v0.6.0', 'resnet18', pretrained=True).eval()
80
-
81
- # # Download human-readable labels for ImageNet.
82
- # response = requests.get("https://git.io/JJkYN")
83
- # labels = response.text.split("\n")
84
-
85
- # def predict(inp):
86
- # inp = transforms.ToTensor()(inp).unsqueeze(0)
87
- # with torch.no_grad():
88
- # prediction = torch.nn.functional.softmax(model(inp)[0], dim=0)
89
- # confidences = {labels[i]: float(prediction[i]) for i in range(1000)}
90
- # return confidences
91
-
92
- # title = "Image Classifier"
93
-
94
- # article = "<p style='text-align: center'><a href='https://arxiv.org/abs/1512.03385' target='_blank'>Deep Residual Learning for Image Recognition</a> | <a href='https://github.com/pytorch/vision/blob/main/torchvision/models/resnet.py' target='_blank'>Github Repo</a></p>"
95
-
96
- # gr.Interface(fn=predict,
97
- # inputs=gr.inputs.Image(type="pil"),
98
- # outputs=gr.outputs.Label(num_top_classes=3),
99
- # examples=["example1.jpg", "example2.jpg"],
100
- # theme="default",
101
- # css=".footer{display:none !important}").launch()
 
52
  inputs = gr.inputs.Image(type='pil')
53
  outputs = gr.outputs.Label(type="confidences",num_top_classes=5)
54
 
55
+ title = "Image Recognition using ResNet"
56
  description = "Demo of a ResNet image classifier trained on the ImageNet dataset. To use it, simply upload your image, or click one of the examples to load them. Read more at the links below."
57
  article = "<p style='text-align: center'><a href='https://arxiv.org/abs/1512.03385' target='_blank'>Deep Residual Learning for Image Recognition</a> | <a href='https://github.com/pytorch/vision/blob/main/torchvision/models/resnet.py' target='_blank'>Github Repo</a></p>"
58
 
 
65
  article=article,
66
  analytics_enabled=False).launch()
67