import streamlit as st from huggingface_hub import InferenceClient client = InferenceClient("HuggingFaceH4/zephyr-7b-beta") def respond( message, history: list[tuple[str, str]], system_message, max_tokens, temperature, top_p, ): messages = [{"role": "system", "content": system_message}] for val in history: if val[0]: messages.append({"role": "user", "content": val[0]}) if val[1]: messages.append({"role": "assistant", "content": val[1]}) messages.append({"role": "user", "content": message}) response = "" for message in client.chat_completion( messages, max_tokens=max_tokens, stream=True, temperature=temperature, top_p=top_p, ): token = message.choices[0].delta.content response += token return response def send_message(): message = st.session_state["new_message"] if message: st.session_state.history.append((message, "")) response = respond( message=message, history=st.session_state.history, system_message=st.session_state.system_message, max_tokens=st.session_state.max_tokens, temperature=st.session_state.temperature, top_p=st.session_state.top_p, ) st.session_state.history[-1] = (message, response) st.session_state["new_message"] = "" # Streamlit UI st.title("Emotional Support Chatbot") st.write("Hello! I'm here to support you emotionally and answer any questions. How are you feeling today?") st.markdown("

Developed by Hashir Ehtisham

", unsafe_allow_html=True) # Set default system message directly if 'system_message' not in st.session_state: st.session_state.system_message = "You are a friendly Emotional Support Chatbot." with st.expander("Settings"): max_tokens_options = [64, 128, 256, 512, 1024, 2048] temperature_options = [0.1, 0.3, 0.5, 0.7, 1.0, 1.5, 2.0, 3.0, 4.0] top_p_options = [0.1, 0.2, 0.3, 0.5, 0.7, 0.8, 0.9, 0.95, 1.0] max_tokens = st.selectbox("Max new tokens", options=max_tokens_options, index=max_tokens_options.index(512), key="max_tokens") temperature = st.selectbox("Temperature", options=temperature_options, index=temperature_options.index(0.7), key="temperature") top_p = st.selectbox("Top-p (nucleus sampling)", options=top_p_options, index=top_p_options.index(0.95), key="top_p") if 'history' not in st.session_state: st.session_state.history = [] # Display chat history above the message input st.text_area("Chat History", value="\n\n".join([f"User: {h[0]}\n\nBot: {h[1]}" for h in st.session_state.history]), height=400, key="chat_history") message = st.text_input("Your message", key="new_message", on_change=send_message)