Hasan Iqbal
Made the imports more user friendly
ec53a03 unverified
raw
history blame
15.6 kB
import os
import json
import uuid
import pandas as pd
from importlib import resources as pkg_resources
from openfactcheck import OpenFactCheck
from openfactcheck.lib import logger
from openfactcheck.evaluator.llm.evaluate_snowballing import SnowballingEvaluator
from openfactcheck.evaluator.llm.evaluate_selfaware import SelfAwareEvaluator
from openfactcheck.evaluator.llm.evaluate_freshqa import FreshQAEvaluator
from openfactcheck.evaluator.llm.evaluate_freetext import FreeTextEvaluator
from openfactcheck.evaluator.llm.report import create_report
from openfactcheck import data as data_dir
# Import LLM Evaluation Dataset
default_dataset_path = str(pkg_resources.files(data_dir))
default_output_path = "tmp/output/llm_evaluator"
class LLMEvaluator(SnowballingEvaluator, SelfAwareEvaluator, FreshQAEvaluator, FreeTextEvaluator):
"""
This class is used to evaluate the performance of a Language Model.
Parameters
----------
model_name : str
The name of the Language Model.
input_path : Union[str, pd.DataFrame]
The path to the CSV file or the DataFrame containing the LLM responses.
The CSV file should have the following two columns:
- index: The index of the response.
- response: The response generated by the LLM.
output_path : str
The path to store the output files.
dataset_path : str
The path to the dataset file containing the questions.
datasets : list
The list of datasets to evaluate the LLM on.
analyze : bool
Whether to analyze the results.
save_plots : bool
Whether to save the plots.
save_report : bool
Whether to save the report.
Attributes
----------
model_name : str
The name of the Language Model.
run_id : str
The unique identifier for the run.
input_path : Union[str, pd.DataFrame]
The path to the CSV file or the DataFrame containing the LLM responses.
output_path : str
The path to store the output files.
dataset_path : str
The path to the dataset file containing the questions.
datasets : list
The list of datasets to evaluate the LLM on.
combined_result : dict
The combined evaluation results for all datasets.
Methods
-------
evaluate(model_name: str, input_path: Union[str, pd.DataFrame], output_path: str = "", dataset_path: str = "", datasets: list = ["snowballing"], analyze: bool = True, save_plots: bool = True, save_report: bool = True):
This function evaluates the performance of the Language Model.
read_input():
This function reads the input file and dataset file and returns a DataFrame containing the combined data.
filter_responses(df: pd.DataFrame, dataset: str):
Filter the responses based on the dataset.
generate_plots(fig_path, save_plots=True):
Generate plots for the evaluation
"""
def __init__(self, ofc: OpenFactCheck):
SnowballingEvaluator.__init__(self)
SelfAwareEvaluator.__init__(self)
FreshQAEvaluator.__init__(self)
FreeTextEvaluator.__init__(self, ofc)
self.logger = logger
# Set the attributes
self.model_name = None
self.run_id = str(uuid.uuid4().hex)
self.input_path = None
self.dataset_path = None
self.output_path = None
self.datasets = None
self.combined_result = None
self.labels = None
self.predictions = None
self.logger.info(f"LLM Evaluator initialized with run_id: {self.run_id}")
def read_input(self):
"""
This function reads the input file and dataset file and returns a DataFrame containing the combined data.
"""
# Check if the input_path is a DataFrame
if isinstance(self.input_path, pd.DataFrame):
df_responses = self.input_path
else:
# Read the CSV file
self.logger.info(f"Reading the LLM responses from {self.input_path}...")
df_responses = pd.read_csv(self.input_path)
# Check the number of columns and if any response is missing
assert df_responses.shape[1] == 2, "The LLM responses should have 2 columns."
# Use the first column as index and rename the index and response column
df_responses.set_index(df_responses.columns[0], inplace=True)
df_responses.index.name = None
df_responses.columns = ["response"]
# Read the avaliable datasets
self.logger.info(f"Reading the dataset from {self.dataset_path}...")
df_dataset = pd.DataFrame()
# Loop through each file in the directory
for filename in os.listdir(self.dataset_path):
if filename.endswith('.jsonl'): # Check if the file is a JSONL file
file_path = os.path.join(self.dataset_path, filename)
logger.info(f"Reading {filename.split('.')[0]} dataset...")
# Read the JSONL file and append it to the combined DataFrame
df = pd.read_json(file_path, lines=True)
df_dataset = pd.concat([df_dataset, df], ignore_index=True)
# Combine the responses and questions
assert len(df_responses) == len(df_dataset), "The number of responses and questions should be the same."
df_combined = pd.concat([df_dataset, df_responses], axis=1)
return df_combined
@staticmethod
def filter_responses(df: pd.DataFrame, dataset: str):
logger.info(f"Filtering responses for dataset: {dataset}...")
# Filter the DataFrame based on the 'source' column directly
if dataset == "snowballing":
# Filter the DataFrame based on the 'source' column directly
filtered_df = df[df['source'] == dataset]
# Create a new DataFrame with only the required columns
responses_df = filtered_df[['topic', 'response']].copy()
# Convert the DataFrame to a list of dictionaries if needed
responses = responses_df.to_dict(orient='records')
elif dataset == "selfaware":
selfaware_subset = [
"selfaware-hotpot_train",
"selfaware-squadqa_train",
"selfaware-triviaqa_train",
"selfaware-squadqa_dev",
"selfaware-hotpot_dev",
"selfaware-triviaqa_dev",
"selfaware-SelfAware",
]
responses = []
for k, row in df.iterrows():
if row["source"] in selfaware_subset:
responses.append({
"label_unanswerable": row["ability_to_test"].lstrip("answerable: ") == "False",
"response": row["response"]})
elif dataset == "freshqa":
responses = []
for k, row in df.iterrows():
if row["source"] == dataset:
responses.append(
{
"question": row["question"],
"reference_answer": row["reference_answer"],
"response": row["response"],
}
)
elif dataset in ["factoolqa", "felm-wk", "factcheck-bench"]:
responses = []
for k, row in df.iterrows():
if row["source"] == dataset:
responses.append(
{
"source": row["source"],
"prompt": row["prompt"],
"response": row["response"],
}
)
elif dataset == "factscore-bio":
factscore_subset = [
"factscore-labelled",
"factscore-unlabelled",
]
responses = []
for k, row in df.iterrows():
if row["source"] in factscore_subset:
responses.append(
{
"source": row["source"],
"prompt": row["prompt"],
"response": row["response"],
}
)
else:
raise ValueError(f"Dataset {dataset} is not supported.")
return responses
def generate_plots(self, fig_path: str = "", save_plots=True):
# Create a bar plot of the accuracy of the LLM responses on the Snowballing dataset
# for each topic and the overall accuracy.
plots = {}
for dataset in self.combined_result:
if dataset == "snowballing":
plots["snowballing"] = {}
plots["snowballing"]["barplot"] = self.snowballing_barplot(self.combined_result[dataset], fig_path, save=save_plots)
plots["snowballing"]["cm"] = self.snowballing_cm(self.labels[dataset], self.predictions[dataset], fig_path, save=save_plots)
elif dataset == "selfaware":
plots["selfaware"] = {}
plots["selfaware"]["barplot"] = self.selfaware_barplot(self.combined_result[dataset], fig_path, save=save_plots)
plots["selfaware"]["cm"] = self.selfaware_cm(self.labels[dataset], self.predictions[dataset], fig_path, save=save_plots)
elif dataset == "freshqa":
plots["freshqa"] = {}
plots["freshqa"]["piechart"] = self.freshqa_piechart(self.combined_result[dataset], fig_path, save=save_plots)
elif dataset == "freetext":
plots["freetext"] = {}
plots["freetext"]["barplot"] = self.freetext_barplot(self.combined_result["freetext"], fig_path, save=save_plots)
return plots
def generate_report(self, report_path: str):
# Create a LaTeX report and return the path to the generated PDF
return create_report(self.model_name, report_path)
def evaluate(self,
model_name: str,
input_path: str,
output_path: str = "",
dataset_path: str = "",
datasets: list = [
"snowballing",
"selfaware",
"freshqa",
"factoolqa",
"felm-wk",
"factcheck-bench",
"factscore-bio"
],
analyze: bool = True,
save_report: bool = True):
self.logger.info("Evaluating LLM responses...")
# Set the attributes
self.model_name = model_name
self.input_path = input_path
self.output_path = output_path
self.dataset_path = dataset_path
self.datasets = datasets
# Check if the output path is provided (if not, use the default template)
if self.output_path == "":
self.output_path = default_output_path
# Check if the output path exists (if not, create it)
if not os.path.exists(f"{self.output_path}/{self.run_id}"):
os.makedirs(f"{self.output_path}/{self.run_id}")
# Check if the questions path is provided (if not, use the default template)
if self.dataset_path == "":
self.dataset_path = default_dataset_path
# Read the input
self.logger.info("Reading the input...")
df = self.read_input()
self.logger.info(f"Combined data contains {len(df)} rows")
# Evaluate model responses over each dataset
self.combined_result = {}
self.labels = {}
self.predictions = {}
for dataset in self.datasets:
logger.info(f"Evaluating responses for dataset: {dataset}...")
if dataset == "snowballing":
# Filter responses based on the dataset
responses = self.filter_responses(df, dataset)
# Evaluate the responses
result, labels, preds = self.evaluate_snowballing(responses)
# Store the output and save the results
df_out = pd.DataFrame({"gold_labels": labels, "predictions": preds})
df_out.to_json(f"{self.output_path}/{self.run_id}/{dataset}_output.jsonl", orient="records", lines=True)
self.combined_result[dataset] = result
self.labels[dataset] = labels
self.predictions[dataset] = preds
elif dataset == "selfaware":
# Filter responses based on the dataset
responses = self.filter_responses(df, dataset)
# Evaluate the responses
result, labels, preds = self.evaluate_selfaware(responses[:30])
# Store the output and save the results
df_out = pd.DataFrame({"gold_labels": labels, "predictions": preds})
df_out.to_json(f"{self.output_path}/{self.run_id}/{dataset}_output.jsonl", orient="records", lines=True)
self.combined_result[dataset] = result
self.labels[dataset] = labels
self.predictions[dataset] = preds
elif dataset == "freshqa":
# Filter responses based on the dataset
responses = self.filter_responses(df, dataset)
# Evaluate the responses
result, raw_evals, preds = self.evaluate_freshqa(responses[:30])
# Store the output and save the results
df_out = pd.DataFrame({"raw_evaluations": raw_evals, "predictions": preds})
df_out.to_json(f"{self.output_path}/{self.run_id}/{dataset}_output.jsonl", orient="records", lines=True)
self.combined_result[dataset] = result
elif dataset in ["factoolqa", "felm-wk", "factcheck-bench", "factscore-bio"]:
# Check if the freetext key exists
if self.combined_result.get("freetext") is None:
self.combined_result["freetext"] = {}
# Filter responses based on the dataset
responses = self.filter_responses(df, dataset)
# Evaluate the responses
results, evaluations = self.evaluate_freetext(responses[:30], self.model_name, self.run_id)
# Store the output and save the results
df_out = pd.DataFrame(evaluations)
df_out.to_json(f"{self.output_path}/{self.run_id}/{dataset}_output.jsonl", orient="records", lines=True)
self.combined_result["freetext"][dataset] = results
else:
logger.error(f"Dataset {dataset} is not supported.")
raise ValueError(f"Dataset {dataset} is not supported.")
logger.info(f"Finished evaluating responses for dataset: {dataset}")
# save all evaluation results
with open(f"{self.output_path}/{self.run_id}/result.json", "w") as json_file:
json.dump(self.combined_result, json_file, indent=4)
# Analyze the results
if analyze:
self.logger.info("Analyzing the results...")
self.generate_plots(save_plots=True, fig_path=f"{self.output_path}/{self.run_id}")
# Create a report
if save_report:
self.logger.info("Creating the report...")
self.generate_report(report_path=f"{self.output_path}/{self.run_id}")
return self.combined_result