sachinkidzure commited on
Commit
7463e46
·
verified ·
1 Parent(s): e067715

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +244 -40
app.py CHANGED
@@ -66,27 +66,54 @@ def resize_image(input_image, resolution):
66
  img = cv2.resize(input_image, (W, H), interpolation=cv2.INTER_LANCZOS4 if k > 1 else cv2.INTER_AREA)
67
  return img
68
 
69
- def process(original_image, input_mask, prompt, negative_prompt, blended, invert_mask, control_strength, seed, randomize_seed, guidance_scale, num_inference_steps):
 
 
 
 
 
 
 
 
 
 
 
 
 
 
70
  if original_image is None:
71
  raise gr.Error('Please upload the input image')
72
- if input_mask is None:
73
- raise gr.Error("Please upload a white-black Mask image")
74
 
75
- H, W = original_image.shape[:2]
76
- original_mask = cv2.resize(input_mask, (W, H))
 
 
 
 
 
 
 
 
 
77
 
78
  if invert_mask:
79
- original_mask = 255 - original_mask
80
- mask = 1.*(original_mask.sum(-1) > 255)[:,:,np.newaxis]
81
- masked_image = original_image * (1 - mask)
 
 
82
  init_image = Image.fromarray(masked_image.astype(np.uint8)).convert("RGB")
83
  mask_image = Image.fromarray(original_mask.astype(np.uint8)).convert("RGB")
84
- generator = torch.Generator("cuda").manual_seed(random.randint(0, 2147483647) if randomize_seed else seed)
 
 
85
  image = pipe(
86
- [prompt]*2,
87
- init_image,
88
- mask_image,
89
- num_inference_steps=num_inference_steps,
90
  guidance_scale=guidance_scale,
91
  generator=generator,
92
  brushnet_conditioning_scale=float(control_strength),
@@ -94,43 +121,220 @@ def process(original_image, input_mask, prompt, negative_prompt, blended, invert
94
  ).images
95
 
96
  if blended:
97
- if control_strength < 1.0:
98
  raise gr.Error('Using blurred blending with control strength less than 1.0 is not allowed')
99
- blended_image = []
 
100
  mask_blurred = cv2.GaussianBlur(mask*255, (21, 21), 0)/255
101
  mask_blurred = mask_blurred[:,:,np.newaxis]
102
- mask = 1 - (1 - mask) * (1 - mask_blurred)
103
  for image_i in image:
104
- image_np = np.array(image_i)
105
- image_pasted = original_image * (1 - mask) + image_np * mask
106
- image_pasted = image_pasted.astype(image_np.dtype)
 
107
  blended_image.append(Image.fromarray(image_pasted))
108
- image = blended_image
 
109
 
110
  return image
111
 
112
- # Create Gradio interface
113
- with gr.Blocks() as demo:
 
 
 
 
 
114
  with gr.Row():
115
  with gr.Column():
116
- original_image = gr.Image(type="numpy", label="Original Image")
117
- input_mask = gr.Image(type="numpy", label="Mask Image")
118
- prompt = gr.Textbox(label="Prompt")
119
- negative_prompt = gr.Textbox(label="Negative Prompt", value='ugly, low quality')
120
- blended = gr.Checkbox(label="Blurred Blending", value=False)
121
- invert_mask = gr.Checkbox(label="Invert Mask", value=False)
122
- control_strength = gr.Slider(label="Control Strength", minimum=0, maximum=1.1, value=1, step=0.01)
123
- seed = gr.Slider(label="Seed", minimum=0, maximum=2147483647, step=1, value=551793204)
124
- randomize_seed = gr.Checkbox(label="Randomize Seed", value=False)
125
- guidance_scale = gr.Slider(label="Guidance Scale", minimum=1, maximum=12, step=0.1, value=7.5)
126
- num_inference_steps = gr.Slider(label="Number of Inference Steps", minimum=1, maximum=50, step=1, value=50)
127
- run_button = gr.Button("Run")
128
-
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
129
  with gr.Column():
130
- result_gallery = gr.Gallery(label='Output', show_label=False, elem_id="gallery", preview=True)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
131
 
132
- inputs = [original_image, input_mask, prompt, negative_prompt, blended, invert_mask, control_strength, seed, randomize_seed, guidance_scale, num_inference_steps]
133
- run_button.click(fn=process, inputs=inputs, outputs=[result_gallery])
134
 
135
- demo.queue(concurrency_count=1, max_size=1, api_open=True)
136
- demo.launch(show_api=True)
 
66
  img = cv2.resize(input_image, (W, H), interpolation=cv2.INTER_LANCZOS4 if k > 1 else cv2.INTER_AREA)
67
  return img
68
 
69
+
70
+ def process(input_image,
71
+ original_image,
72
+ original_mask,
73
+ input_mask,
74
+ selected_points,
75
+ prompt,
76
+ negative_prompt,
77
+ blended,
78
+ invert_mask,
79
+ control_strength,
80
+ seed,
81
+ randomize_seed,
82
+ guidance_scale,
83
+ num_inference_steps):
84
  if original_image is None:
85
  raise gr.Error('Please upload the input image')
86
+ if (original_mask is None or len(selected_points)==0) and input_mask is None:
87
+ raise gr.Error("Please click the region where you hope unchanged/changed, or upload a white-black Mask image")
88
 
89
+ # load example image
90
+ if isinstance(original_image, int):
91
+ image_name = image_examples[original_image][0]
92
+ original_image = cv2.imread(image_name)
93
+ original_image = cv2.cvtColor(original_image, cv2.COLOR_BGR2RGB)
94
+
95
+ if input_mask is not None:
96
+ H,W=original_image.shape[:2]
97
+ original_mask = cv2.resize(input_mask, (W, H))
98
+ else:
99
+ original_mask = np.clip(255 - original_mask, 0, 255).astype(np.uint8)
100
 
101
  if invert_mask:
102
+ original_mask=255-original_mask
103
+
104
+ mask = 1.*(original_mask.sum(-1)>255)[:,:,np.newaxis]
105
+ masked_image = original_image * (1-mask)
106
+
107
  init_image = Image.fromarray(masked_image.astype(np.uint8)).convert("RGB")
108
  mask_image = Image.fromarray(original_mask.astype(np.uint8)).convert("RGB")
109
+
110
+ generator = torch.Generator("cuda").manual_seed(random.randint(0,2147483647) if randomize_seed else seed)
111
+
112
  image = pipe(
113
+ [prompt]*2,
114
+ init_image,
115
+ mask_image,
116
+ num_inference_steps=num_inference_steps,
117
  guidance_scale=guidance_scale,
118
  generator=generator,
119
  brushnet_conditioning_scale=float(control_strength),
 
121
  ).images
122
 
123
  if blended:
124
+ if control_strength<1.0:
125
  raise gr.Error('Using blurred blending with control strength less than 1.0 is not allowed')
126
+ blended_image=[]
127
+ # blur, you can adjust the parameters for better performance
128
  mask_blurred = cv2.GaussianBlur(mask*255, (21, 21), 0)/255
129
  mask_blurred = mask_blurred[:,:,np.newaxis]
130
+ mask = 1-(1-mask) * (1-mask_blurred)
131
  for image_i in image:
132
+ image_np=np.array(image_i)
133
+ image_pasted=original_image * (1-mask) + image_np*mask
134
+
135
+ image_pasted=image_pasted.astype(image_np.dtype)
136
  blended_image.append(Image.fromarray(image_pasted))
137
+
138
+ image=blended_image
139
 
140
  return image
141
 
142
+ block = gr.Blocks(
143
+ theme=gr.themes.Soft(
144
+ radius_size=gr.themes.sizes.radius_none,
145
+ text_size=gr.themes.sizes.text_md
146
+ )
147
+ ).queue()
148
+ with block:
149
  with gr.Row():
150
  with gr.Column():
151
+
152
+ gr.HTML(f"""
153
+ <div style="text-align: center;">
154
+ <h1>BrushNet: A Plug-and-Play Image Inpainting Model with Decomposed Dual-Branch Diffusion</h1>
155
+ <div style="display: flex; justify-content: center; align-items: center; text-align: center;">
156
+ <a href=""></a>
157
+ <a href='https://tencentarc.github.io/BrushNet/'><img src='https://img.shields.io/badge/Project_Page-BrushNet-green' alt='Project Page'></a>
158
+ <a href='https://arxiv.org/abs/2403.06976'><img src='https://img.shields.io/badge/Paper-Arxiv-blue'></a>
159
+ </div>
160
+ </br>
161
+ </div>
162
+ """)
163
+
164
+
165
+ with gr.Accordion(label="🧭 Instructions:", open=True, elem_id="accordion"):
166
+ with gr.Row(equal_height=True):
167
+ gr.Markdown("""
168
+ - ⭐️ <b>step1: </b>Upload or select one image from Example
169
+ - ⭐️ <b>step2: </b>Click on Input-image to select the object to be retained (or upload a white-black Mask image, in which white color indicates the region you want to keep unchanged). You can tick the 'Invert Mask' box to switch region unchanged and change.
170
+ - ⭐️ <b>step3: </b>Input prompt for generating new contents
171
+ - ⭐️ <b>step4: </b>Click Run button
172
+ """)
173
+ with gr.Row():
174
+ with gr.Column():
175
+ with gr.Column(elem_id="Input"):
176
+ with gr.Row():
177
+ with gr.Tabs(elem_classes=["feedback"]):
178
+ with gr.TabItem("Input Image"):
179
+ input_image = gr.Image(type="numpy", label="input",scale=2, height=640)
180
+ original_image = gr.State(value=None,label="index")
181
+ original_mask = gr.State(value=None)
182
+ selected_points = gr.State([],label="select points")
183
+ with gr.Row(elem_id="Seg"):
184
+ radio = gr.Radio(['foreground', 'background'], label='Click to seg: ', value='foreground',scale=2)
185
+ undo_button = gr.Button('Undo seg', elem_id="btnSEG",scale=1)
186
+ prompt = gr.Textbox(label="Prompt", placeholder="Please input your prompt",value='',lines=1)
187
+ negative_prompt = gr.Text(
188
+ label="Negative Prompt",
189
+ max_lines=5,
190
+ placeholder="Please input your negative prompt",
191
+ value='ugly, low quality',lines=1
192
+ )
193
+ with gr.Group():
194
+ with gr.Row():
195
+ blending = gr.Checkbox(label="Blurred Blending", value=False)
196
+ invert_mask = gr.Checkbox(label="Invert Mask", value=True)
197
+ run_button = gr.Button("Run",elem_id="btn")
198
+
199
+ with gr.Accordion("More input params (highly-recommended)", open=False, elem_id="accordion1"):
200
+ control_strength = gr.Slider(
201
+ label="Control Strength: ", show_label=True, minimum=0, maximum=1.1, value=1, step=0.01
202
+ )
203
+ with gr.Group():
204
+ seed = gr.Slider(
205
+ label="Seed: ", minimum=0, maximum=2147483647, step=1, value=551793204
206
+ )
207
+ randomize_seed = gr.Checkbox(label="Randomize seed", value=False)
208
+
209
+ with gr.Group():
210
+ with gr.Row():
211
+ guidance_scale = gr.Slider(
212
+ label="Guidance scale",
213
+ minimum=1,
214
+ maximum=12,
215
+ step=0.1,
216
+ value=12,
217
+ )
218
+ num_inference_steps = gr.Slider(
219
+ label="Number of inference steps",
220
+ minimum=1,
221
+ maximum=50,
222
+ step=1,
223
+ value=50,
224
+ )
225
+ with gr.Row(elem_id="Image"):
226
+ with gr.Tabs(elem_classes=["feedback1"]):
227
+ with gr.TabItem("User-specified Mask Image (Optional)"):
228
+ input_mask = gr.Image(type="numpy", label="Mask Image", height=640)
229
+
230
  with gr.Column():
231
+ with gr.Tabs(elem_classes=["feedback"]):
232
+ with gr.TabItem("Outputs"):
233
+ result_gallery = gr.Gallery(label='Output', show_label=False, elem_id="gallery", preview=True)
234
+ with gr.Row():
235
+ def process_example(input_image, prompt, input_mask, original_image, selected_points,result_gallery): #
236
+ return input_image, prompt, input_mask, original_image, [], result_gallery
237
+ example = gr.Examples(
238
+ label="Input Example",
239
+ examples=image_examples,
240
+ inputs=[input_image, prompt, input_mask, original_image, selected_points,result_gallery],
241
+ outputs=[input_image, prompt, input_mask, original_image, selected_points],
242
+ fn=process_example,
243
+ run_on_click=True,
244
+ examples_per_page=10
245
+ )
246
+
247
+ # once user upload an image, the original image is stored in `original_image`
248
+ def store_img(img):
249
+ # image upload is too slow
250
+ if min(img.shape[0], img.shape[1]) > 512:
251
+ img = resize_image(img, 512)
252
+ if max(img.shape[0], img.shape[1])*1.0/min(img.shape[0], img.shape[1])>2.0:
253
+ raise gr.Error('image aspect ratio cannot be larger than 2.0')
254
+ return img, img, [], None # when new image is uploaded, `selected_points` should be empty
255
+
256
+ input_image.upload(
257
+ store_img,
258
+ [input_image],
259
+ [input_image, original_image, selected_points]
260
+ )
261
+
262
+ # user click the image to get points, and show the points on the image
263
+ def segmentation(img, sel_pix):
264
+ # online show seg mask
265
+ points = []
266
+ labels = []
267
+ for p, l in sel_pix:
268
+ points.append(p)
269
+ labels.append(l)
270
+ mobile_predictor.set_image(img if isinstance(img, np.ndarray) else np.array(img))
271
+ with torch.no_grad():
272
+ masks, _, _ = mobile_predictor.predict(point_coords=np.array(points), point_labels=np.array(labels), multimask_output=False)
273
+
274
+ output_mask = np.ones((masks.shape[1], masks.shape[2], 3))*255
275
+ for i in range(3):
276
+ output_mask[masks[0] == True, i] = 0.0
277
+
278
+ mask_all = np.ones((masks.shape[1], masks.shape[2], 3))
279
+ color_mask = np.random.random((1, 3)).tolist()[0]
280
+ for i in range(3):
281
+ mask_all[masks[0] == True, i] = color_mask[i]
282
+ masked_img = img / 255 * 0.3 + mask_all * 0.7
283
+ masked_img = masked_img*255
284
+ ## draw points
285
+ for point, label in sel_pix:
286
+ cv2.drawMarker(masked_img, point, colors[label], markerType=markers[label], markerSize=20, thickness=5)
287
+ return masked_img, output_mask
288
+
289
+ def get_point(img, sel_pix, point_type, evt: gr.SelectData):
290
+ if point_type == 'foreground':
291
+ sel_pix.append((evt.index, 1)) # append the foreground_point
292
+ elif point_type == 'background':
293
+ sel_pix.append((evt.index, 0)) # append the background_point
294
+ else:
295
+ sel_pix.append((evt.index, 1)) # default foreground_point
296
+
297
+ if isinstance(img, int):
298
+ image_name = image_examples[img][0]
299
+ img = cv2.imread(image_name)
300
+ img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
301
+
302
+ # online show seg mask
303
+ masked_img, output_mask = segmentation(img, sel_pix)
304
+ return masked_img.astype(np.uint8), output_mask
305
+
306
+ input_image.select(
307
+ get_point,
308
+ [original_image, selected_points, radio],
309
+ [input_image, original_mask],
310
+ )
311
+
312
+ # undo the selected point
313
+ def undo_points(orig_img, sel_pix):
314
+ # draw points
315
+ output_mask = None
316
+ if len(sel_pix) != 0:
317
+ if isinstance(orig_img, int): # if orig_img is int, the image if select from examples
318
+ temp = cv2.imread(image_examples[orig_img][0])
319
+ temp = cv2.cvtColor(temp, cv2.COLOR_BGR2RGB)
320
+ else:
321
+ temp = orig_img.copy()
322
+ sel_pix.pop()
323
+ # online show seg mask
324
+ if len(sel_pix) !=0:
325
+ temp, output_mask = segmentation(temp, sel_pix)
326
+ return temp.astype(np.uint8), output_mask
327
+ else:
328
+ gr.Error("Nothing to Undo")
329
+
330
+ undo_button.click(
331
+ undo_points,
332
+ [original_image, selected_points],
333
+ [input_image, original_mask]
334
+ )
335
+
336
+ ips=[input_image, original_image, original_mask, input_mask, selected_points, prompt, negative_prompt, blending, invert_mask, control_strength, seed, randomize_seed, guidance_scale, num_inference_steps]
337
+ run_button.click(fn=process, inputs=ips, outputs=[result_gallery])
338
 
 
 
339
 
340
+ block.launch()