Spaces:
Build error
Build error
##!/usr/bin/python3 | |
# -*- coding: utf-8 -*- | |
import os | |
print("Installing correct gradio version...") | |
os.system("pip uninstall -y gradio") | |
os.system("pip install gradio==3.50.0") | |
print("Installing Finished!") | |
##!/usr/bin/python3 | |
# -*- coding: utf-8 -*- | |
import gradio as gr | |
import os | |
import cv2 | |
from PIL import Image | |
import numpy as np | |
from segment_anything import SamPredictor, sam_model_registry | |
import torch | |
from diffusers import StableDiffusionBrushNetPipeline, BrushNetModel, UniPCMultistepScheduler | |
import random | |
mobile_sam = sam_model_registry['vit_h'](checkpoint='data/ckpt/sam_vit_h_4b8939.pth').to("cuda") | |
mobile_sam.eval() | |
mobile_predictor = SamPredictor(mobile_sam) | |
colors = [(255, 0, 0), (0, 255, 0)] | |
markers = [1, 5] | |
# - - - - - examples - - - - - # | |
image_examples = [ | |
["examples/brushnet/src/test_image.jpg", "A beautiful cake on the table", "examples/brushnet/src/test_mask.jpg", 0, [], [Image.open("examples/brushnet/src/test_result.png")]], | |
["examples/brushnet/src/example_1.jpg", "A man in Chinese traditional clothes", "examples/brushnet/src/example_1_mask.jpg", 1, [], [Image.open("examples/brushnet/src/example_1_result.png")]], | |
["examples/brushnet/src/example_3.jpg", "a cut toy on the table", "examples/brushnet/src/example_3_mask.jpg", 2, [], [Image.open("examples/brushnet/src/example_3_result.png")]], | |
["examples/brushnet/src/example_4.jpeg", "a car driving in the wild", "examples/brushnet/src/example_4_mask.jpg", 3, [], [Image.open("examples/brushnet/src/example_4_result.png")]], | |
["examples/brushnet/src/example_5.jpg", "a charming woman wearing dress standing in the dark forest", "examples/brushnet/src/example_5_mask.jpg", 4, [], [Image.open("examples/brushnet/src/example_5_result.png")]], | |
] | |
# choose the base model here | |
base_model_path = "data/ckpt/realisticVisionV60B1_v51VAE" | |
# base_model_path = "runwayml/stable-diffusion-v1-5" | |
# input brushnet ckpt path | |
brushnet_path = "data/ckpt/segmentation_mask_brushnet_ckpt" | |
brushnet = BrushNetModel.from_pretrained(brushnet_path, torch_dtype=torch.float16) | |
pipe = StableDiffusionBrushNetPipeline.from_pretrained( | |
base_model_path, brushnet=brushnet, torch_dtype=torch.float16, low_cpu_mem_usage=False | |
) | |
# speed up diffusion process with faster scheduler and memory optimization | |
pipe.scheduler = UniPCMultistepScheduler.from_config(pipe.scheduler.config) | |
# remove following line if xformers is not installed or when using Torch 2.0. | |
# pipe.enable_xformers_memory_efficient_attention() | |
# memory optimization. | |
pipe.enable_model_cpu_offload() | |
def resize_image(input_image, resolution): | |
H, W, C = input_image.shape | |
H = float(H) | |
W = float(W) | |
k = float(resolution) / min(H, W) | |
H *= k | |
W *= k | |
H = int(np.round(H / 64.0)) * 64 | |
W = int(np.round(W / 64.0)) * 64 | |
img = cv2.resize(input_image, (W, H), interpolation=cv2.INTER_LANCZOS4 if k > 1 else cv2.INTER_AREA) | |
return img | |
# once user upload an image, the original image is stored in `original_image` | |
def store_img(img): | |
# image upload is too slow | |
if min(img.shape[0], img.shape[1]) > 512: | |
img = resize_image(img, 512) | |
if max(img.shape[0], img.shape[1])*1.0/min(img.shape[0], img.shape[1])>2.0: | |
raise gr.Error('image aspect ratio cannot be larger than 2.0') | |
return img | |
def process(original_image, input_mask, prompt, negative_prompt, blended, invert_mask, control_strength, seed, randomize_seed, guidance_scale, num_inference_steps): | |
if original_image is None: | |
raise gr.Error('Please upload the input image') | |
if input_mask is None: | |
raise gr.Error("Please upload a white-black Mask image") | |
#resizing input image and mask of the object | |
original_image = store_img(original_image) | |
input_mask = store_img(input_mask) | |
H, W = original_image.shape[:2] | |
original_mask = cv2.resize(input_mask, (W, H)) | |
if invert_mask: | |
original_mask = 255 - original_mask | |
mask = 1.*(original_mask.sum(-1) > 255)[:,:,np.newaxis] | |
masked_image = original_image * (1 - mask) | |
init_image = Image.fromarray(masked_image.astype(np.uint8)).convert("RGB") | |
mask_image = Image.fromarray(original_mask.astype(np.uint8)).convert("RGB") | |
generator = torch.Generator("cuda").manual_seed(random.randint(0, 2147483647) if randomize_seed else seed) | |
image = pipe( | |
[prompt]*2, | |
init_image, | |
mask_image, | |
num_inference_steps=num_inference_steps, | |
guidance_scale=guidance_scale, | |
generator=generator, | |
brushnet_conditioning_scale=float(control_strength), | |
negative_prompt=[negative_prompt]*2, | |
).images | |
if blended: | |
if control_strength < 1.0: | |
raise gr.Error('Using blurred blending with control strength less than 1.0 is not allowed') | |
blended_image = [] | |
mask_blurred = cv2.GaussianBlur(mask*255, (21, 21), 0)/255 | |
mask_blurred = mask_blurred[:,:,np.newaxis] | |
mask = 1 - (1 - mask) * (1 - mask_blurred) | |
for image_i in image: | |
image_np = np.array(image_i) | |
image_pasted = original_image * (1 - mask) + image_np * mask | |
image_pasted = image_pasted.astype(image_np.dtype) | |
blended_image.append(Image.fromarray(image_pasted)) | |
image = blended_image | |
return image | |
# Create Gradio interface | |
with gr.Blocks() as demo: | |
with gr.Row(): | |
with gr.Column(): | |
original_image = gr.Image(type="numpy", label="Original Image") | |
input_mask = gr.Image(type="numpy", label="Mask Image") | |
prompt = gr.Textbox(label="Prompt") | |
negative_prompt = gr.Textbox(label="Negative Prompt", value='ugly, low quality') | |
blended = gr.Checkbox(label="Blurred Blending", value=False) | |
invert_mask = gr.Checkbox(label="Invert Mask", value=False) | |
control_strength = gr.Slider(label="Control Strength", minimum=0, maximum=1.1, value=1, step=0.01) | |
seed = gr.Slider(label="Seed", minimum=0, maximum=2147483647, step=1, value=551793204) | |
randomize_seed = gr.Checkbox(label="Randomize Seed", value=False) | |
guidance_scale = gr.Slider(label="Guidance Scale", minimum=1, maximum=12, step=0.1, value=7.5) | |
num_inference_steps = gr.Slider(label="Number of Inference Steps", minimum=1, maximum=50, step=1, value=50) | |
#selected_points = gr.State([],label="select points") | |
run_button = gr.Button("Run") | |
with gr.Column(): | |
result_gallery = gr.Gallery(label='Output', show_label=False, elem_id="gallery", preview=True) | |
inputs = [original_image, input_mask, prompt, negative_prompt, blended, invert_mask, control_strength, seed, randomize_seed, guidance_scale, num_inference_steps] | |
run_button.click(fn=process, inputs=inputs, outputs=[result_gallery]) | |
demo.queue(concurrency_count=1, api_open=True) | |
demo.launch(show_api=True, enable_queue=True, show_error=True) |