Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -5,7 +5,7 @@ from vllm import SamplingParams, LLM
|
|
5 |
# Load the model and tokenizer from Hugging Face
|
6 |
model_name = "Qwen/Qwen2-7B"
|
7 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
8 |
-
|
9 |
|
10 |
def generate_response(prompt, max_tokens, temperature, top_p):
|
11 |
# Tokenize the prompt
|
@@ -19,7 +19,7 @@ def generate_response(prompt, max_tokens, temperature, top_p):
|
|
19 |
)
|
20 |
|
21 |
# Generate text using vLLM
|
22 |
-
output =
|
23 |
|
24 |
# Decode the generated tokens to text
|
25 |
generated_text = tokenizer.decode(output[0]["token_ids"], skip_special_tokens=True)
|
|
|
5 |
# Load the model and tokenizer from Hugging Face
|
6 |
model_name = "Qwen/Qwen2-7B"
|
7 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
8 |
+
vllm_model = LLM(model="Qwen/Qwen2-7B")
|
9 |
|
10 |
def generate_response(prompt, max_tokens, temperature, top_p):
|
11 |
# Tokenize the prompt
|
|
|
19 |
)
|
20 |
|
21 |
# Generate text using vLLM
|
22 |
+
output = vllm_model.generate(inputs["input_ids"], sampling_params)
|
23 |
|
24 |
# Decode the generated tokens to text
|
25 |
generated_text = tokenizer.decode(output[0]["token_ids"], skip_special_tokens=True)
|