Spaces:
Running
Running
File size: 3,764 Bytes
0efa81e 3d53d43 ed53c37 3d53d43 0efa81e 3d53d43 8f95bbc 0efa81e f71f3be 9dad4e7 0efa81e 3d53d43 0efa81e 72c2e54 0efa81e 72c2e54 0efa81e 3d53d43 0efa81e 3d53d43 0efa81e 3d53d43 0efa81e 3d53d43 0efa81e 72c2e54 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 |
import gradio as gr
from transformers import AutoTokenizer, AutoProcessor, VisionEncoderDecoderModel
from vllm import LLM, SamplingParams
from PIL import Image
# Load the language model and tokenizer from Hugging Face
model_name = "facebook/opt-125m"
tokenizer = AutoTokenizer.from_pretrained(model_name)
# Initialize vLLM with CPU configuration
vllm_model = LLM(model=model_name, tensor_parallel_size=1, device="cpu")
# Load the OCR model and processor
ocr_model_name = "microsoft/trocr-small-handwritten"
ocr_model = VisionEncoderDecoderModel.from_pretrained(ocr_model_name)
ocr_processor = AutoProcessor.from_pretrained(ocr_model_name)
def generate_response(prompt, max_tokens, temperature, top_p):
# Define sampling parameters
sampling_params = SamplingParams(
max_tokens=max_tokens,
temperature=temperature,
top_p=top_p,
)
# Generate text using vLLM (input is the raw string `prompt`)
output = vllm_model.generate(prompt, sampling_params)
# Extract and decode the generated tokens
generated_text = output[0].outputs[0].text
return generated_text
def ocr_image(image):
# Open the image and preprocess for OCR
image = Image.open(image)
pixel_values = ocr_processor(images=image, return_tensors="pt").pixel_values
# Perform OCR
outputs = ocr_model.generate(pixel_values)
text = ocr_processor.decode(outputs[0], skip_special_tokens=True)
return text
# Gradio UI
with gr.Blocks() as demo:
gr.Markdown("# π Hugging Face Integration with vLLM and OCR (CPU)")
gr.Markdown("Upload an image to extract text using OCR or generate text using the vLLM integration.")
with gr.Tab("Text Generation"):
with gr.Row():
with gr.Column():
prompt_input = gr.Textbox(
label="Prompt",
placeholder="Enter your prompt here...",
lines=3,
)
max_tokens = gr.Slider(
label="Max Tokens",
minimum=10,
maximum=500,
value=100,
step=10,
)
temperature = gr.Slider(
label="Temperature",
minimum=0.1,
maximum=1.0,
value=0.7,
step=0.1,
)
top_p = gr.Slider(
label="Top P",
minimum=0.1,
maximum=1.0,
value=0.9,
step=0.1,
)
submit_button = gr.Button("Generate")
with gr.Column():
output_text = gr.Textbox(
label="Generated Text",
lines=10,
interactive=False,
)
submit_button.click(
generate_response,
inputs=[prompt_input, max_tokens, temperature, top_p],
outputs=output_text,
)
with gr.Tab("OCR"):
with gr.Row():
with gr.Column():
image_input = gr.Image(
label="Upload Image",
type="file",
image_mode="RGB",
)
ocr_submit_button = gr.Button("Extract Text")
with gr.Column():
ocr_output = gr.Textbox(
label="Extracted Text",
lines=10,
interactive=False,
)
ocr_submit_button.click(
ocr_image,
inputs=[image_input],
outputs=ocr_output,
)
# Launch the app
demo.launch() |